![landingai-python](/statics/github-mark.png)
landingai-python
Landing AI Python library that enables you to use LandingLens with ease. (https://app.landing.ai/)
Stars: 71
![screenshot](/screenshots_githubs/landing-ai-landingai-python.jpg)
The LandingLens Python library contains the LandingLens development library and examples that show how to integrate your app with LandingLens in a variety of scenarios. The library allows users to acquire images from different sources, run inference on computer vision models deployed in LandingLens, and provides examples in Jupyter Notebooks and Python apps for various tasks such as object detection, home automation, satellite image analysis, license plate detection, and streaming video analysis.
README:
The LandingLens Python library contains the LandingLens development library and examples that show how to integrate your app with LandingLens in a variety of scenarios. The examples cover different model types, image acquisition sources, and post-procesing techniques.
First, install the Landing AI Python library:
pip install landingai
After installing the Landing AI Python library, you can start acquiring images from one of many image sources.
For example, from a single image file:
from landingai.pipeline.frameset import Frame
frame = Frame.from_image("/path/to/your/image.jpg")
frame.resize(width=512, height=512)
frame.save_image("/tmp/resized-image.png")
You can also extract frames from your webcam. For example:
from landingai.pipeline.image_source import Webcam
with Webcam(fps=0.5) as webcam:
for frame in webcam:
frame.resize(width=512, height=512)
frame.save_image("/tmp/webcam-image.png")
To learn how to acquire images from more sources, go to Image Acquisition.
If you have deployed a computer vision model in LandingLens, you can use this library to send images to that model for inference.
For example, let's say we've created and deployed a model in LandingLens that detects coffee mugs. Now, we'll use the code below to extract images (frames) from a webcam and run inference on those images.
[!NOTE] If you don't have a LandingLens account, create one here. You will need to get an "endpoint ID" and "API key" from LandingLens in order to run inferences. Check our Running Inferences / Getting Started.
[!NOTE] Learn how to use LandingLens from our Support Center and Video Tutorial Library. Need help with specific use cases? Post your questions in our Community.
from landingai.pipeline.image_source import Webcam
from landingai.predict import Predictor
predictor = Predictor(
endpoint_id="abcdef01-abcd-abcd-abcd-01234567890",
api_key="land_sk_xxxxxx",
)
with Webcam(fps=0.5) as webcam:
for frame in webcam:
frame.resize(width=512)
frame.run_predict(predictor=predictor)
frame.overlay_predictions()
if "coffee-mug" in frame.predictions:
frame.save_image("/tmp/latest-webcam-image.png", include_predictions=True)
We've provided some examples in Jupyter Notebooks to focus on ease of use, and some examples in Python apps to provide a more robust and complete experience.
Example | Description | Type |
---|---|---|
Poker Card Suit Identification | This notebook shows how to use an object detection model from LandingLens to detect suits on playing cards. A webcam is used to take photos of playing cards. | Jupyter Notebook |
Door Monitoring for Home Automation | This notebook shows how to use an object detection model from LandingLens to detect whether a door is open or closed. An RTSP camera is used to acquire images. | Jupyter Notebook |
Satellite Images and Post-Processing | This notebook shows how to use a Visual Prompting model from LandingLens to identify different objects in satellite images. The notebook includes post-processing scripts that calculate the percentage of ground cover that each object takes up. | Jupyter Notebook |
License Plate Detection and Recognition | This notebook shows how to extract frames from a video file and use a object detection model and OCR from LandingLens to identify and recognize different license plates. | Jupyter Notebook |
Streaming Video | This application shows how to continuously run inference on images extracted from a streaming RTSP video camera feed. | Python application |
All the examples in this repo can be run locally.
To give you some guidance, here's how you can run the rtsp-capture
example locally in a shell environment:
- Clone the repo to local:
git clone https://github.com/landing-ai/landingai-python.git
- Install the library:
poetry install --with examples
(See the poetry docs for how to installpoetry
) - Activate the virtual environment:
poetry shell
- Run:
python landingai-python/examples/capture-service/run.py
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for landingai-python
Similar Open Source Tools
![landingai-python Screenshot](/screenshots_githubs/landing-ai-landingai-python.jpg)
landingai-python
The LandingLens Python library contains the LandingLens development library and examples that show how to integrate your app with LandingLens in a variety of scenarios. The library allows users to acquire images from different sources, run inference on computer vision models deployed in LandingLens, and provides examples in Jupyter Notebooks and Python apps for various tasks such as object detection, home automation, satellite image analysis, license plate detection, and streaming video analysis.
![NekoImageGallery Screenshot](/screenshots_githubs/hv0905-NekoImageGallery.jpg)
NekoImageGallery
NekoImageGallery is an online AI image search engine that utilizes the Clip model and Qdrant vector database. It supports keyword search and similar image search. The tool generates 768-dimensional vectors for each image using the Clip model, supports OCR text search using PaddleOCR, and efficiently searches vectors using the Qdrant vector database. Users can deploy the tool locally or via Docker, with options for metadata storage using Qdrant database or local file storage. The tool provides API documentation through FastAPI's built-in Swagger UI and can be used for tasks like image search, text extraction, and vector search.
![kubeai Screenshot](/screenshots_githubs/substratusai-kubeai.jpg)
kubeai
KubeAI is a highly scalable AI platform that runs on Kubernetes, serving as a drop-in replacement for OpenAI with API compatibility. It can operate OSS model servers like vLLM and Ollama, with zero dependencies and additional OSS addons included. Users can configure models via Kubernetes Custom Resources and interact with models through a chat UI. KubeAI supports serving various models like Llama v3.1, Gemma2, and Qwen2, and has plans for model caching, LoRA finetuning, and image generation.
![OpenLLM Screenshot](/screenshots_githubs/bentoml-OpenLLM.jpg)
OpenLLM
OpenLLM is a platform that helps developers run any open-source Large Language Models (LLMs) as OpenAI-compatible API endpoints, locally and in the cloud. It supports a wide range of LLMs, provides state-of-the-art serving and inference performance, and simplifies cloud deployment via BentoML. Users can fine-tune, serve, deploy, and monitor any LLMs with ease using OpenLLM. The platform also supports various quantization techniques, serving fine-tuning layers, and multiple runtime implementations. OpenLLM seamlessly integrates with other tools like OpenAI Compatible Endpoints, LlamaIndex, LangChain, and Transformers Agents. It offers deployment options through Docker containers, BentoCloud, and provides a community for collaboration and contributions.
![agentok Screenshot](/screenshots_githubs/dustland-agentok.jpg)
agentok
Agentok Studio is a tool built upon AG2, a powerful agent framework from Microsoft, offering intuitive visual tools to streamline the creation and management of complex agent-based workflows. It simplifies the process for creators and developers by generating native Python code with minimal dependencies, enabling users to create self-contained code that can be executed anywhere. The tool is currently under development and not recommended for production use, but contributions are welcome from the community to enhance its capabilities and functionalities.
![axoned Screenshot](/screenshots_githubs/axone-protocol-axoned.jpg)
axoned
Axone is a public dPoS layer 1 designed for connecting, sharing, and monetizing resources in the AI stack. It is an open network for collaborative AI workflow management compatible with any data, model, or infrastructure, allowing sharing of data, algorithms, storage, compute, APIs, both on-chain and off-chain. The 'axoned' node of the AXONE network is built on Cosmos SDK & Tendermint consensus, enabling companies & individuals to define on-chain rules, share off-chain resources, and create new applications. Validators secure the network by maintaining uptime and staking $AXONE for rewards. The blockchain supports various platforms and follows Semantic Versioning 2.0.0. A docker image is available for quick start, with documentation on querying networks, creating wallets, starting nodes, and joining networks. Development involves Go and Cosmos SDK, with smart contracts deployed on the AXONE blockchain. The project provides a Makefile for building, installing, linting, and testing. Community involvement is encouraged through Discord, open issues, and pull requests.
![weblinx Screenshot](/screenshots_githubs/McGill-NLP-weblinx.jpg)
weblinx
WebLINX is a Python library and dataset for real-world website navigation with multi-turn dialogue. The repository provides code for training models reported in the WebLINX paper, along with a comprehensive API to work with the dataset. It includes modules for data processing, model evaluation, and utility functions. The modeling directory contains code for processing, training, and evaluating models such as DMR, LLaMA, MindAct, Pix2Act, and Flan-T5. Users can install specific dependencies for HTML processing, video processing, model evaluation, and library development. The evaluation module provides metrics and functions for evaluating models, with ongoing work to improve documentation and functionality.
![SillyTavern Screenshot](/screenshots_githubs/SillyTavern-SillyTavern.jpg)
SillyTavern
SillyTavern is a user interface you can install on your computer (and Android phones) that allows you to interact with text generation AIs and chat/roleplay with characters you or the community create. SillyTavern is a fork of TavernAI 1.2.8 which is under more active development and has added many major features. At this point, they can be thought of as completely independent programs.
![burr Screenshot](/screenshots_githubs/DAGWorks-Inc-burr.jpg)
burr
Burr is a Python library and UI that makes it easy to develop applications that make decisions based on state (chatbots, agents, simulations, etc...). Burr includes a UI that can track/monitor those decisions in real time.
![RAVE Screenshot](/screenshots_githubs/acids-ircam-RAVE.jpg)
RAVE
RAVE is a variational autoencoder for fast and high-quality neural audio synthesis. It can be used to generate new audio samples from a given dataset, or to modify the style of existing audio samples. RAVE is easy to use and can be trained on a variety of audio datasets. It is also computationally efficient, making it suitable for real-time applications.
![AgentLab Screenshot](/screenshots_githubs/ServiceNow-AgentLab.jpg)
AgentLab
AgentLab is an open, easy-to-use, and extensible framework designed to accelerate web agent research. It provides features for developing and evaluating agents on various benchmarks supported by BrowserGym. The framework allows for large-scale parallel agent experiments using ray, building blocks for creating agents over BrowserGym, and a unified LLM API for OpenRouter, OpenAI, Azure, or self-hosted using TGI. AgentLab also offers reproducibility features, a unified LeaderBoard, and supports multiple benchmarks like WebArena, WorkArena, WebLinx, VisualWebArena, AssistantBench, GAIA, Mind2Web-live, and MiniWoB.
![BotServer Screenshot](/screenshots_githubs/GeneralBots-BotServer.jpg)
BotServer
General Bot is a chat bot server that accelerates bot development by providing code base, resources, deployment to the cloud, and templates for creating new bots. It allows modification of bot packages without code through a database and service backend. Users can develop bot packages using custom code in editors like Visual Studio Code, Atom, or Brackets. The tool supports creating bots by copying and pasting files and using favorite tools from Office or Photoshop. It also enables building custom dialogs with BASIC for extending bots.
![FunClip Screenshot](/screenshots_githubs/alibaba-damo-academy-FunClip.jpg)
FunClip
FunClip is an open-source, locally deployable automated video editing tool that utilizes the FunASR Paraformer series models from Alibaba DAMO Academy for speech recognition in videos. Users can select text segments or speakers from the recognition results and click the clip button to obtain the corresponding video segments. FunClip integrates advanced features such as the Paraformer-Large model for accurate Chinese ASR, SeACo-Paraformer for customized hotword recognition, CAM++ speaker recognition model, Gradio interactive interface for easy usage, support for multiple free edits with automatic SRT subtitles generation, and segment-specific SRT subtitles.
![agents Screenshot](/screenshots_githubs/Polymarket-agents.jpg)
agents
Polymarket Agents is a developer framework and set of utilities for building AI agents to trade autonomously on Polymarket. It integrates with Polymarket API, provides AI agent utilities for prediction markets, supports local and remote RAG, sources data from various services, and offers comprehensive LLM tools for prompt engineering. The architecture features modular components like APIs and scripts for managing local environments, server set-up, and CLI for end-user commands.
![AdalFlow Screenshot](/screenshots_githubs/SylphAI-Inc-AdalFlow.jpg)
AdalFlow
AdalFlow is a library designed to help developers build and optimize Large Language Model (LLM) task pipelines. It follows a design pattern similar to PyTorch, offering a light, modular, and robust codebase. Named in honor of Ada Lovelace, AdalFlow aims to inspire more women to enter the AI field. The library is tailored for various GenAI applications like chatbots, translation, summarization, code generation, and autonomous agents, as well as classical NLP tasks such as text classification and named entity recognition. AdalFlow emphasizes modularity, robustness, and readability to support users in customizing and iterating code for their specific use cases.
![Follow Screenshot](/screenshots_githubs/RSSNext-Follow.jpg)
Follow
Follow is a content organization tool that creates a noise-free timeline for users, allowing them to share lists, explore collections, and browse distraction-free. It offers features like subscribing to feeds, AI-powered browsing, dynamic content support, an ownership economy with $POWER tipping, and a community-driven experience. Follow is under active development and welcomes feedback from users and developers. It can be accessed via web app or desktop client and offers installation methods for different operating systems. The tool aims to provide a customized information hub, AI-powered browsing experience, and support for various types of content, while fostering a community-driven and open-source environment.
For similar tasks
![landingai-python Screenshot](/screenshots_githubs/landing-ai-landingai-python.jpg)
landingai-python
The LandingLens Python library contains the LandingLens development library and examples that show how to integrate your app with LandingLens in a variety of scenarios. The library allows users to acquire images from different sources, run inference on computer vision models deployed in LandingLens, and provides examples in Jupyter Notebooks and Python apps for various tasks such as object detection, home automation, satellite image analysis, license plate detection, and streaming video analysis.
![AiTreasureBox Screenshot](/screenshots_githubs/superiorlu-AiTreasureBox.jpg)
AiTreasureBox
AiTreasureBox is a versatile AI tool that provides a collection of pre-trained models and algorithms for various machine learning tasks. It simplifies the process of implementing AI solutions by offering ready-to-use components that can be easily integrated into projects. With AiTreasureBox, users can quickly prototype and deploy AI applications without the need for extensive knowledge in machine learning or deep learning. The tool covers a wide range of tasks such as image classification, text generation, sentiment analysis, object detection, and more. It is designed to be user-friendly and accessible to both beginners and experienced developers, making AI development more efficient and accessible to a wider audience.
![react-native-vision-camera Screenshot](/screenshots_githubs/mrousavy-react-native-vision-camera.jpg)
react-native-vision-camera
VisionCamera is a powerful, high-performance Camera library for React Native. It features Photo and Video capture, QR/Barcode scanner, Customizable devices and multi-cameras ("fish-eye" zoom), Customizable resolutions and aspect-ratios (4k/8k images), Customizable FPS (30..240 FPS), Frame Processors (JS worklets to run facial recognition, AI object detection, realtime video chats, ...), Smooth zooming (Reanimated), Fast pause and resume, HDR & Night modes, Custom C++/GPU accelerated video pipeline (OpenGL).
![InternVL Screenshot](/screenshots_githubs/OpenGVLab-InternVL.jpg)
InternVL
InternVL scales up the ViT to _**6B parameters**_ and aligns it with LLM. It is a vision-language foundation model that can perform various tasks, including: **Visual Perception** - Linear-Probe Image Classification - Semantic Segmentation - Zero-Shot Image Classification - Multilingual Zero-Shot Image Classification - Zero-Shot Video Classification **Cross-Modal Retrieval** - English Zero-Shot Image-Text Retrieval - Chinese Zero-Shot Image-Text Retrieval - Multilingual Zero-Shot Image-Text Retrieval on XTD **Multimodal Dialogue** - Zero-Shot Image Captioning - Multimodal Benchmarks with Frozen LLM - Multimodal Benchmarks with Trainable LLM - Tiny LVLM InternVL has been shown to achieve state-of-the-art results on a variety of benchmarks. For example, on the MMMU image classification benchmark, InternVL achieves a top-1 accuracy of 51.6%, which is higher than GPT-4V and Gemini Pro. On the DocVQA question answering benchmark, InternVL achieves a score of 82.2%, which is also higher than GPT-4V and Gemini Pro. InternVL is open-sourced and available on Hugging Face. It can be used for a variety of applications, including image classification, object detection, semantic segmentation, image captioning, and question answering.
![clarifai-python Screenshot](/screenshots_githubs/Clarifai-clarifai-python.jpg)
clarifai-python
The Clarifai Python SDK offers a comprehensive set of tools to integrate Clarifai's AI platform to leverage computer vision capabilities like classification , detection ,segementation and natural language capabilities like classification , summarisation , generation , Q&A ,etc into your applications. With just a few lines of code, you can leverage cutting-edge artificial intelligence to unlock valuable insights from visual and textual content.
![ailia-models Screenshot](/screenshots_githubs/axinc-ai-ailia-models.jpg)
ailia-models
The collection of pre-trained, state-of-the-art AI models. ailia SDK is a self-contained, cross-platform, high-speed inference SDK for AI. The ailia SDK provides a consistent C++ API across Windows, Mac, Linux, iOS, Android, Jetson, and Raspberry Pi platforms. It also supports Unity (C#), Python, Rust, Flutter(Dart) and JNI for efficient AI implementation. The ailia SDK makes extensive use of the GPU through Vulkan and Metal to enable accelerated computing. # Supported models 323 models as of April 8th, 2024
![edenai-apis Screenshot](/screenshots_githubs/edenai-edenai-apis.jpg)
edenai-apis
Eden AI aims to simplify the use and deployment of AI technologies by providing a unique API that connects to all the best AI engines. With the rise of **AI as a Service** , a lot of companies provide off-the-shelf trained models that you can access directly through an API. These companies are either the tech giants (Google, Microsoft , Amazon) or other smaller, more specialized companies, and there are hundreds of them. Some of the most known are : DeepL (translation), OpenAI (text and image analysis), AssemblyAI (speech analysis). There are **hundreds of companies** doing that. We're regrouping the best ones **in one place** !
![artificial-intelligence Screenshot](/screenshots_githubs/PsorTheDoctor-artificial-intelligence.jpg)
artificial-intelligence
This repository contains a collection of AI projects implemented in Python, primarily in Jupyter notebooks. The projects cover various aspects of artificial intelligence, including machine learning, deep learning, natural language processing, computer vision, and more. Each project is designed to showcase different AI techniques and algorithms, providing a hands-on learning experience for users interested in exploring the field of artificial intelligence.
For similar jobs
![weave Screenshot](/screenshots_githubs/wandb-weave.jpg)
weave
Weave is a toolkit for developing Generative AI applications, built by Weights & Biases. With Weave, you can log and debug language model inputs, outputs, and traces; build rigorous, apples-to-apples evaluations for language model use cases; and organize all the information generated across the LLM workflow, from experimentation to evaluations to production. Weave aims to bring rigor, best-practices, and composability to the inherently experimental process of developing Generative AI software, without introducing cognitive overhead.
![LLMStack Screenshot](/screenshots_githubs/trypromptly-LLMStack.jpg)
LLMStack
LLMStack is a no-code platform for building generative AI agents, workflows, and chatbots. It allows users to connect their own data, internal tools, and GPT-powered models without any coding experience. LLMStack can be deployed to the cloud or on-premise and can be accessed via HTTP API or triggered from Slack or Discord.
![VisionCraft Screenshot](/screenshots_githubs/VisionCraft-org-VisionCraft.jpg)
VisionCraft
The VisionCraft API is a free API for using over 100 different AI models. From images to sound.
![kaito Screenshot](/screenshots_githubs/Azure-kaito.jpg)
kaito
Kaito is an operator that automates the AI/ML inference model deployment in a Kubernetes cluster. It manages large model files using container images, avoids tuning deployment parameters to fit GPU hardware by providing preset configurations, auto-provisions GPU nodes based on model requirements, and hosts large model images in the public Microsoft Container Registry (MCR) if the license allows. Using Kaito, the workflow of onboarding large AI inference models in Kubernetes is largely simplified.
![PyRIT Screenshot](/screenshots_githubs/Azure-PyRIT.jpg)
PyRIT
PyRIT is an open access automation framework designed to empower security professionals and ML engineers to red team foundation models and their applications. It automates AI Red Teaming tasks to allow operators to focus on more complicated and time-consuming tasks and can also identify security harms such as misuse (e.g., malware generation, jailbreaking), and privacy harms (e.g., identity theft). The goal is to allow researchers to have a baseline of how well their model and entire inference pipeline is doing against different harm categories and to be able to compare that baseline to future iterations of their model. This allows them to have empirical data on how well their model is doing today, and detect any degradation of performance based on future improvements.
![tabby Screenshot](/screenshots_githubs/TabbyML-tabby.jpg)
tabby
Tabby is a self-hosted AI coding assistant, offering an open-source and on-premises alternative to GitHub Copilot. It boasts several key features: * Self-contained, with no need for a DBMS or cloud service. * OpenAPI interface, easy to integrate with existing infrastructure (e.g Cloud IDE). * Supports consumer-grade GPUs.
![spear Screenshot](/screenshots_githubs/isl-org-spear.jpg)
spear
SPEAR (Simulator for Photorealistic Embodied AI Research) is a powerful tool for training embodied agents. It features 300 unique virtual indoor environments with 2,566 unique rooms and 17,234 unique objects that can be manipulated individually. Each environment is designed by a professional artist and features detailed geometry, photorealistic materials, and a unique floor plan and object layout. SPEAR is implemented as Unreal Engine assets and provides an OpenAI Gym interface for interacting with the environments via Python.
![Magick Screenshot](/screenshots_githubs/Oneirocom-Magick.jpg)
Magick
Magick is a groundbreaking visual AIDE (Artificial Intelligence Development Environment) for no-code data pipelines and multimodal agents. Magick can connect to other services and comes with nodes and templates well-suited for intelligent agents, chatbots, complex reasoning systems and realistic characters.