kiss_ai

kiss_ai

Keep it Simple, Stupid AI Agent and Evolutionary Framework with GEPA, AlphaEvolve, Self Evolve

Stars: 56

Visit
 screenshot

KISS AI is a lightweight and powerful multi-agent evolutionary framework that simplifies building AI agents. It uses native function calling for efficiency and accuracy, making building AI agents as straightforward as possible. The framework includes features like multi-agent orchestration, agent evolution and optimization, relentless coding agent for long-running tasks, output formatting, trajectory saving and visualization, GEPA for prompt optimization, KISSEvolve for algorithm discovery, self-evolving multi-agent, Docker integration, multiprocessing support, and support for various models from OpenAI, Anthropic, Gemini, Together AI, and OpenRouter.

README:

Image description

Version: 0.1.11

When Simplicity Becomes Your Superpower: Meet KISS Multi Agent Evolutionary Framework

"Everything should be made as simple as possible, but not simpler." β€” Albert Einstein


KISS stands for "Keep it Simple, Stupid" which is a well known software engineering principle.

πŸ“‘ Table of Contents

🎯 The Problem with AI Agent Frameworks Today

Let's be honest. The AI agent ecosystem has become a jungle.

Every week brings a new framework promising to revolutionize how we build AI agents. They come loaded with abstractions on top of abstractions, configuration files that rival tax forms, and dependency trees that make node_modules look tidy. By the time you've figured out how to make your first tool call, you've already burned through half your patience and all your enthusiasm.

What if there was another way?

What if building AI agents could be as straightforward as the name suggests?

Enter KISS β€” the Keep It Simple, Stupid Agent Framework.

πŸš€ Your First Agent in 30 Seconds.

Try the interactive Jupyter notebook by running uv run notebook --lab.

Let me show you something beautiful:

from kiss.core.kiss_agent import KISSAgent

def calculate(expression: str) -> str:
    """Evaluate a math expression."""
    return str(eval(expression))

agent = KISSAgent(name="Math Buddy")
result = agent.run(
    model_name="gemini-2.5-flash",
    prompt_template="Calculate: {question}",
    arguments={"question": "What is 15% of 847?"},
    tools=[calculate]
)
print(result)  # 127.05

That's a fully functional AI agent that uses tools. No annotations. No boilerplate. No ceremony. Just intent, directly expressed.

KISS uses native function calling from the LLM providers for efficiency and accuracy. Your Python functions become tools automatically. Type hints become schemas. Docstrings become descriptions. No crazy annotations. Everything just works.

πŸ“ Blogs

🀝 Multi-Agent Orchestration

Here's where KISS really shines β€” composing multiple agents into systems greater than the sum of their parts.

Since agents are just functions, you orchestrate them with plain Python. Here's a complete research-to-article pipeline with three agents:

from kiss.core.kiss_agent import KISSAgent

# Agent 1: Research a topic
researcher = KISSAgent(name="Researcher")
research = researcher.run(
    model_name="gpt-4o",
    prompt_template="List 3 key facts about {topic}. Be concise.",
    arguments={"topic": "Python asyncio"},
    is_agentic=False  # Simple generation, no tools
)

# Agent 2: Write a draft using the research
writer = KISSAgent(name="Writer")
draft = writer.run(
    model_name="claude-sonnet-4-5",
    prompt_template="Write a 2-paragraph intro based on:\n{research}",
    arguments={"research": research},
    is_agentic=False
)

# Agent 3: Polish the draft
editor = KISSAgent(name="Editor")
final = editor.run(
    model_name="gemini-2.5-flash",
    prompt_template="Improve clarity and fix any errors:\n{draft}",
    arguments={"draft": draft},
    is_agentic=False
)

print(final)

That's it. Each agent can use a different model. Each agent saves its own trajectory. And you compose them with the most powerful orchestration tool ever invented: regular Python code.

No special orchestration framework needed. No message buses. No complex state machines. Just Python functions calling Python functions.

🧬 Using Agent Creator and Optimizer

πŸ“– For detailed Agent Creator and Optimizer documentation, see Agent Creator and Optimizer README

The Agent Creator and Optimizer module provides tools to automatically evolve and optimize AI agents for token efficiency, execution speed, and cost using evolutionary algorithms with Pareto frontier maintenance.

Key Component:

  • AgentEvolver: Maintains a population of agent variants and evolves them using mutation and crossover operations

It uses a Pareto frontier approach to track non-dominated solutions, optimizing for multiple objectives simultaneously without requiring a single combined metric.

from kiss.agents.create_and_optimize_agent import AgentEvolver, create_progress_callback

evolver = AgentEvolver()

best_variant = evolver.evolve(
    task_description="Build a code analysis assistant that can parse and analyze large codebases",
    max_generations=10,
    max_frontier_size=6,
    mutation_probability=0.8,
    progress_callback=create_progress_callback(verbose=True),  # Optional progress tracking
)

print(f"Best agent: {best_variant.folder_path}")
print(f"Metrics: {best_variant.metrics}")

Key Features:

  • Multi-Objective Optimization: Optimizes for flexible metrics (e.g., success, token usage, execution time, cost)
  • Pareto Frontier Maintenance: Keeps track of all non-dominated solutions
  • Evolutionary Operations: Supports mutation (improving one variant) and crossover (combining ideas from two variants)
  • Uses RelentlessCodingAgent: Leverages the relentless single-agent coding system with auto-continuation for agent improvement
  • Automatic Pruning: Removes dominated variants to manage memory and storage
  • Lineage Tracking: Records parent relationships and improvement history
  • Progress Callbacks: Optional progress_callback for tracking optimization progress, building UIs, or logging
  • Configurable Parameters: Extensive configuration options for generations, frontier size, thresholds, etc.

For usage examples, API reference, and configuration options, please see the Agent Creator and Optimizer README.

πŸ’ͺ Using Relentless Coding Agent

For very long running coding tasks, use the RelentlessCodingAgent. The agent will work relentlessly to complete your task using a single-agent architecture with smart continuation:

from kiss.agents.coding_agents.relentless_coding_agent import RelentlessCodingAgent

agent = RelentlessCodingAgent(name="Simple Coding Agent")

result = agent.run(
    prompt_template="""
        Create a Python script that reads a CSV file,
        filters rows where age > 18, and writes to a new file.
    """,
    subtasker_model_name="claude-sonnet-4-5",
    work_dir="./workspace",
    max_steps=200,
    trials=200
)
print(f"Result: {result}")

Running with Docker:

You can optionally run bash commands inside a Docker container for isolation:

from kiss.agents.coding_agents.relentless_coding_agent import RelentlessCodingAgent

agent = RelentlessCodingAgent(name="Dockered Relentless Coding Agent")

result = agent.run(
    prompt_template="""
        Install numpy and create a script that generates 
        a random matrix and computes its determinant.
    """,
    docker_image="python:3.11-slim",  # Bash commands run in Docker
    max_steps=200,
    trials=2000
)
print(f"Result: {result}")

Key Features:

  • Single-Agent with Auto-Continuation: A single agent executes the task across multiple trials, automatically continuing where it left off via structured JSON progress tracking (πŸ’‘ new idea)
  • Structured Progress Tracking: Each trial reports completed and remaining tasks in JSON format (done/next items), which is deduplicated and passed to subsequent trials along with a scan of existing files in the work directory
  • Adaptive Step Thresholds: Step limits per trial scale based on trial number and progress, with conservative early trials and more steps for trials showing good progress
  • Efficiency Rules: Built-in prompt instructions enforce step minimization, batching, and immediate completion when tests pass
  • Output Truncation: Long tool outputs are automatically truncated to keep context manageable
  • Retry with Context: Failed trials automatically pass structured progress summaries and file listings to the next trial
  • Configurable Trials: Set high trial counts (e.g., 200+) for truly relentless execution
  • Docker Support: Optional isolated execution via Docker containers
  • Path Access Control: Enforces read/write permissions on file system paths
  • Built-in Tools: Bash, Read, and Edit tools for file operations
  • Budget & Token Tracking: Automatic cost and token usage monitoring across all trials

🎨 Output Formatting

Unlike other agentic systems, you do not need to specify the output schema for the agent. Just create a suitable "finish" function with parameters. The parameters could be treated as the top level keys in a json format.

Example: Custom Structured Output

from kiss.core.kiss_agent import KISSAgent

# Define a custom finish function with your desired output structure
def finish(
    sentiment: str,
    confidence: float,
    key_phrases: str,
    summary: str
) -> str:
    """
    Complete the analysis with structured results.
    
    Args:
        sentiment: The overall sentiment ('positive', 'negative', or 'neutral')
        confidence: Confidence score between 0.0 and 1.0
        key_phrases: Comma-separated list of key phrases found in the text
        summary: A brief summary of the analysis
    
    Returns:
        The formatted analysis result
    """
    ...

The agent will automatically use your custom finish function instead of the default one which returns its argument. The function's parameters define what information the agent must provide, and the docstring helps the LLM understand how to format each field.

πŸ“Š Trajectory Saving and Visualization

Agent trajectories are automatically saved to the artifacts directory (default: artifacts/). Each trajectory includes:

  • Complete message history with token usage and budget information appended to each message
  • Tool calls and results
  • Configuration used
  • Timestamps
  • Budget and token usage statistics

Visualizing Trajectories

The framework includes a web-based trajectory visualizer for viewing agent execution histories:

# Run the visualizer server
uv run python -m kiss.viz_trajectory.server artifacts

# Or with custom host/port
uv run python -m kiss.viz_trajectory.server artifacts --host 127.0.0.1 --port 5050

Then open your browser to http://127.0.0.1:5050 to view the trajectories.

The visualizer provides:

  • Modern UI: Dark theme with smooth animations
  • Sidebar Navigation: List of all trajectories sorted by start time
  • Markdown Rendering: Full markdown support for message content
  • Code Highlighting: Syntax highlighting for fenced code blocks
  • Message Display: Clean, organized view of agent conversations
  • Metadata Display: Shows agent ID, model, steps, tokens, and budget information

Trajectory Visualizer

πŸ“– For detailed trajectory visualizer documentation, see Trajectory Visualizer README

πŸ“– Overview

KISS is a lightweight, yet powerful, multi agent framework that implements a ReAct (Reasoning and Acting) loop for LLM agents. The framework provides:

  • Simple Architecture: Clean, minimal core that's easy to understand and extend
  • Relentless Coding Agent: Single-agent coding system with smart auto-continuation for infinite tasks (πŸ’‘ new idea)
  • Create and Optimize Agent: Multi-objective agent evolution and improvement with Pareto frontier (πŸ’‘ new idea)
  • GEPA Implementation From Scratch: Genetic-Pareto prompt optimization for compound AI systems
  • KISSEvolve Implementation From Scratch: Evolutionary algorithm discovery framework with LLM-guided mutation and crossover
  • Model Agnostic: Support for multiple LLM providers (OpenAI, Anthropic, Gemini, Together AI, OpenRouter)
  • Native Function Calling: Seamless tool integration using native function calling APIs (OpenAI, Anthropic, Gemini, Together AI, and OpenRouter)
  • Docker Integration: Built-in Docker manager for running agents in isolated environments
  • Trajectory Tracking: Automatic saving of agent execution trajectories with unified state management
  • Token Streaming: Real-time token streaming via async callback for all providers (OpenAI, Anthropic, Gemini, Together AI, OpenRouter), including tool execution output
  • Token Usage Tracking: Built-in token usage tracking with automatic context length detection and step counting
  • Budget Tracking: Automatic cost tracking and budget monitoring across all agent runs
  • Self-Evolution: Framework for agents to evolve and refine other multi agents
  • SWE-bench Dataset Support: Built-in support for downloading and working with SWE-bench Verified dataset
  • RAG Support: Simple retrieval-augmented generation system with in-memory vector store
  • Useful Agents: Pre-built utility agents including prompt refinement and general bash execution agents
  • Multiprocessing Support: Utilities for parallel execution of functions using multiprocessing
  • Trajectory Visualization: Web-based visualizer for viewing agent execution trajectories with modern UI

πŸ“¦ Installation

# Install uv if you haven't already
curl -LsSf https://astral.sh/uv/install.sh | sh

# Clone/download KISS and navigate to the directory
cd kiss

# Create virtual environment
uv venv --python 3.13

# Install all dependencies (full installation)
uv sync

# (Optional) activate the venv for convenience (uv run works without activation)
source .venv/bin/activate

# Set up API keys (optional, for LLM providers)
export GEMINI_API_KEY="your-key-here"
export OPENAI_API_KEY="your-key-here"
export ANTHROPIC_API_KEY="your-key-here"
export TOGETHER_API_KEY="your-key-here"
export OPENROUTER_API_KEY="your-key-here"

Selective Installation (Dependency Groups)

KISS supports selective installation via dependency groups for minimal footprints:

# Minimal core only (no model SDKs) - for custom integrations
uv sync --group core

# Core + specific provider support
uv sync --group claude    # Core + Anthropic Claude
uv sync --group openai    # Core + OpenAI Compatible Models
uv sync --group gemini    # Core + Google Gemini

# Claude Coding Agent (includes claude-agent-sdk)
uv sync --group claude-coding-agent

# Docker support (for running agents in isolated containers)
uv sync --group docker

# Evals dependencies (for running benchmarks)
uv sync --group evals

# Development tools (mypy, ruff, pytest, jupyter, etc.)
uv sync --group dev

# Combine multiple groups as needed
uv sync --group claude --group dev

Dependency Group Contents:

Group Description Key Packages
core Minimal core module pydantic, rich, requests, beautifulsoup4, playwright, flask
claude Core + Anthropic core + anthropic
openai Core + OpenAI core + openai
gemini Core + Google core + google-genai
claude-coding-agent Claude Coding Agent claude + claude-agent-sdk, uvicorn, starlette
docker Docker integration docker, types-docker
evals Benchmark running datasets, swebench, orjson, scipy, scikit-learn
dev Development tools mypy, ruff, pyright, pytest, jupyter, notebook

Optional Dependencies: All LLM provider SDKs (openai, anthropic, google-genai) are optional. You can import kiss.core and kiss.agents without installing all of them. When you try to use a model whose SDK is not installed, KISS raises a clear KISSError telling you which package to install. Similarly, the coding agents (ClaudeCodingAgent, GeminiCliAgent, OpenAICodexAgent) only require their respective SDKs β€” you won't get import errors for agents whose SDKs you haven't installed.

πŸ“š KISSAgent API Reference

πŸ“– For detailed KISSAgent API documentation, see API.md

🎯 Using GEPA for Prompt Optimization

KISS has a fresh implementation of GEPA with some improvements. GEPA (Genetic-Pareto) is a prompt optimization framework that uses natural language reflection to evolve prompts. It maintains an instance-level Pareto frontier of top-performing prompts and combines complementary lessons through structural merge. GEPA is based on the paper "GEPA: Reflective Prompt Evolution Can Outperform Reinforcement Learning".

πŸ“– For detailed GEPA documentation, see GEPA README

πŸ§ͺ Using KISSEvolve for Algorithm Discovery

KISSEvolve is an evolutionary algorithm discovery framework that uses LLM-guided mutation and crossover to evolve code variants. It supports advanced features including island-based evolution, novelty rejection sampling, and multiple parent sampling methods.

For usage examples, API reference, and configuration options, please see the KISSEvolve README.

πŸ“– For detailed KISSEvolve documentation, see KISSEvolve README

πŸ”„ Using Self-Evolving Multi-Agent

The Self-Evolving Multi-Agent is an advanced coding agent with planning, error recovery, dynamic tool creation, and the ability to evolve itself for better efficiency and accuracy using KISSEvolve.

πŸ“– For detailed Self-Evolving Multi-Agent documentation, see Self-Evolving Multi-Agent README

from kiss.agents.self_evolving_multi_agent import SelfEvolvingMultiAgent

# Create and run the agent
agent = SelfEvolvingMultiAgent()
result = agent.run("""
    Create a Python script that:
    1. Generates the first 20 Fibonacci numbers
    2. Saves them to a file called 'fibonacci.txt'
    3. Reads the file back and prints the sum
""")
print(result)

# Access execution statistics
stats = agent.get_stats()
print(f"Completed todos: {stats['completed']}/{stats['total_todos']}")
print(f"Dynamic tools created: {stats['dynamic_tools']}")

Key Features:

  • Planning & Task Tracking: Creates and manages a todo list with status tracking (pending β†’ in_progress β†’ completed/failed)
  • Sub-Agent Delegation: Spawns focused sub-agents for individual task execution
  • Dynamic Tool Creation: Creates reusable tools at runtime when prompted by the orchestrator
  • Error Recovery: Automatic retry logic with configurable max retries
  • Docker Isolation: Runs code execution in isolated Docker containers
  • Self-Evolution: Uses KISSEvolve to optimize for efficiency and accuracy

Evolving the Agent:

from kiss.agents.self_evolving_multi_agent.agent_evolver import AgentEvolver

# Create evolver
evolver = AgentEvolver(
    package_name="kiss.agents.self_evolving_multi_agent",
    agent_file_path="multi_agent.py",
    model_name="gemini-3-flash-preview",
    focus_on_efficiency=True,
)

# Run baseline evaluation first
baseline = evolver.run_baseline_evaluation()
print(f"Baseline fitness: {baseline['fitness']:.4f}")

# Evolve the agent
best = evolver.evolve()
print(f"Evolved fitness: {best.fitness:.4f}")

# Save the best variant
evolver.save_best(best)

πŸ’» Using KISS Coding Agent

The KISS Coding Agent is a multi-agent system with orchestration and sub-agents using KISSAgent. It efficiently breaks down complex coding tasks into manageable sub-tasks and includes automatic prompt refinement on failures:

from kiss.agents.coding_agents import KISSCodingAgent

# Create agent with a name
agent = KISSCodingAgent(name="My Coding Agent")

# Run a coding task with path restrictions
result = agent.run(
    prompt_template="""
        Write, test, and optimize a fibonacci function in Python
        that is efficient and correct.
    """,
    orchestrator_model_name="claude-sonnet-4-5",  # Model for orchestration and execution
    subtasker_model_name="claude-opus-4-5",  # Model for subtask generation and execution
    refiner_model_name="claude-haiku-4-5",  # Model for prompt refinement on failures
    readable_paths=["src/"],  # Allowed read paths (relative to base_dir)
    writable_paths=["output/"],  # Allowed write paths (relative to base_dir)
    base_dir=".",  # Base working directory (project root)
    max_steps=100,  # Maximum steps per agent
    trials=3  # Number of retry attempts
)
print(f"Result: {result}")

Key Features:

  • Multi-Agent Architecture: Orchestrator delegates to executor agents for specific sub-tasks
  • Prompt Refinement: Automatically refines prompts when tasks fail using trajectory analysis (KISSCodingAgent)
  • Efficient Orchestration: Manages execution through smart task delegation
  • Bash Command Parsing: Automatically extracts readable/writable directories from bash commands using parse_bash_command_paths()
  • Path Access Control: Enforces read/write permissions on file system paths before command execution
  • Docker Support: Optional Docker container execution via the docker_image parameter for isolated bash command execution

🧠 Using Claude Coding Agent

Requires: claude-agent-sdk and anthropic packages. Install with uv sync --group claude-coding-agent.

Since everyone loves Claude Code, I thought I will provide API access to Claude Code so that you can use the best coding agent. The Claude Coding Agent uses the Claude Agent SDK to generate tested Python programs with file system access controls:

from kiss.agents.coding_agents import ClaudeCodingAgent

# Create agent with a name
agent = ClaudeCodingAgent(name="My Coding Agent")

# Run a coding task with path restrictions
result = agent.run(
    model_name="claude-sonnet-4-5",
    prompt_template="""
        Write, test, and optimize a fibonacci function in Python
        that is efficient and correct.
    """,
    readable_paths=["src/"],  # Allowed read paths (relative to base_dir)
    writable_paths=["output/"],  # Allowed write paths (relative to base_dir)
    base_dir="."  # Base working directory (project root)
)
if result:
    print(f"Result: {result}")

Browser Streaming Output:

The Claude Coding Agent supports real-time browser streaming. When use_browser=True is set, a local server is started and a browser window opens automatically to display live output with a modern dark-themed UI:

from kiss.agents.coding_agents import ClaudeCodingAgent

agent = ClaudeCodingAgent(name="My Agent", use_browser=True)
result = agent.run(
    model_name="claude-sonnet-4-5",
    prompt_template="Write a fibonacci function with tests"
)

When running claude_coding_agent.py directly, browser output is enabled by default:

uv run python -m kiss.agents.coding_agents.claude_coding_agent

The browser interface features scrollable panels for thinking blocks, text output, tool calls with syntax highlighting, tool results, and a final result summary with cost/token stats.

Key Features:

  • Real-time Streaming: Uses include_partial_messages for live streaming of assistant text, thinking, and tool calls as they happen
  • Extended Thinking: Supports Claude's extended thinking with configurable max_thinking_tokens for improved reasoning
  • Rich Console Output: Uses a dedicated ConsolePrinter for formatted terminal output with syntax-highlighted tool calls, thinking blocks, and result panels
  • Browser Streaming Output: Uses BrowserPrinter with uvicorn/starlette SSE server for real-time browser display with modern UI, scrollable panels, and syntax highlighting
  • Path Access Control: Enforces read/write permissions on file system paths
  • Budget & Token Tracking: Automatic cost and token usage monitoring

Built-in Tools Available:

  • Read, Write, Edit, MultiEdit: File operations
  • Glob, Grep: File search and content search
  • Bash: Shell command execution
  • WebSearch, WebFetch: Web access

πŸ€– Using Gemini CLI Agent

Requires: google-adk and google-genai packages. Install with uv sync --group gemini.

The Gemini CLI Agent uses the Google ADK (Agent Development Kit) to generate tested Python programs:

from kiss.agents.coding_agents import GeminiCliAgent

# Create agent with a name (must be a valid identifier - use underscores, not hyphens)
agent = GeminiCliAgent(name="my_coding_agent")

result = agent.run(
    model_name="gemini-3-pro-preview",
    prompt_template="Write a fibonacci function with tests",
    readable_paths=["src/"],
    writable_paths=["output/"],
    base_dir="."
)
if result:
    print(f"Result: {result}")

🌐 Using OpenAI Codex Agent

Requires: openai-agents package. Install with uv sync --group openai.

The OpenAI Codex Agent uses the OpenAI Agents SDK to generate tested Python programs:

from kiss.agents.coding_agents import OpenAICodexAgent

agent = OpenAICodexAgent(name="My Coding Agent")

result = agent.run(
    model_name="gpt-5.3-codex",
    prompt_template="Write a fibonacci function with tests",
    readable_paths=["src/"],
    writable_paths=["output/"],
    base_dir="."
)
if result:
    print(f"Result: {result}")

πŸ” Using SimpleRAG for Retrieval-Augmented Generation

SimpleRAG provides a lightweight RAG system with in-memory vector storage and similarity search:

Note: SimpleRAG requires a model with embedding support. Currently, OpenAI, Together AI, and Gemini models support embeddings. Anthropic models do not provide embedding APIs.

from kiss.rag import SimpleRAG

# Initialize RAG system with a model name that supports embeddings
rag = SimpleRAG(model_name="gpt-4o", metric="cosine")  # or "l2" for L2 distance

# Add documents
documents = [
    {
        "id": "1",
        "text": "Python is a programming language known for its simplicity.",
        "metadata": {"topic": "programming", "language": "Python"},
    },
    {
        "id": "2",
        "text": "Machine learning uses algorithms to learn from data.",
        "metadata": {"topic": "ML", "field": "AI"},
    },
    {
        "id": "3",
        "text": "Docker containers provide isolated execution environments.",
        "metadata": {"topic": "devops", "tool": "Docker"},
    },
]
rag.add_documents(documents)

# Query similar documents
results = rag.query("What is Python?", top_k=2)
for result in results:
    print(f"ID: {result['id']}")
    print(f"Text: {result['text']}")
    print(f"Score: {result['score']:.4f}")
    print(f"Metadata: {result['metadata']}")
    print()

# Query with filter
def filter_by_topic(doc: dict) -> bool:
    return doc.get("metadata", {}).get("topic") == "programming"

filtered_results = rag.query("programming language", top_k=5, filter_fn=filter_by_topic)

# Get collection statistics
stats = rag.get_collection_stats()
print(f"Documents: {stats['num_documents']}, Embedding dim: {stats['embedding_dimension']}")

# Delete documents
rag.delete_documents(["1", "2"])

# Get a specific document
doc = rag.get_document("3")

# Clear all documents
rag.clear_collection()

⚑ Multiprocessing

KISS provides utilities for parallel execution of Python functions using multiprocessing. This is useful for running multiple independent tasks concurrently to maximize CPU utilization.

Basic Usage

from kiss.multiprocessing import run_functions_in_parallel

def add(a, b):
    return a + b

def multiply(x, y):
    return x * y

# Define tasks as (function, arguments) tuples
tasks = [(add, [1, 2]), (multiply, [3, 4])]
results = run_functions_in_parallel(tasks)
print(results)  # [3, 12]

With Keyword Arguments

from kiss.multiprocessing import run_functions_in_parallel_with_kwargs

def greet(name, title="Mr."):
    return f"Hello, {title} {name}!"

functions = [greet, greet]
args_list = [["Alice"], ["Bob"]]
kwargs_list = [{"title": "Dr."}, {}]

results = run_functions_in_parallel_with_kwargs(functions, args_list, kwargs_list)
print(results)  # ["Hello, Dr. Alice!", "Hello, Mr. Bob!"]

πŸ’» Checking Available Cores

from kiss.multiprocessing import get_available_cores

num_cores = get_available_cores()
print(f"Available CPU cores: {num_cores}")

The multiprocessing utilities automatically scale to the number of available CPU cores, using at most as many workers as there are tasks to avoid unnecessary overhead.

🐳 Docker Manager

KISS provides a DockerManager class for managing Docker containers and executing commands inside them. This is useful for running code in isolated environments, testing with specific dependencies, or working with SWE-bench tasks.

Basic Usage

from kiss.docker import DockerManager

# Create a Docker manager for an Ubuntu container
with DockerManager(image_name="ubuntu", tag="22.04", workdir="/app") as docker:
    # Run commands inside the container
    output = docker.run_bash_command("echo 'Hello from Docker!'", "Print greeting")
    print(output)
    
    output = docker.run_bash_command("python3 --version", "Check Python version")
    print(output)

Manual Lifecycle Management

from kiss.docker import DockerManager

docker = DockerManager(image_name="python", tag="3.11", workdir="/workspace")
docker.open()  # Pull image and start container

try:
    output = docker.run_bash_command("pip install numpy", "Install numpy")
    output = docker.run_bash_command("python -c 'import numpy; print(numpy.__version__)'", "Check numpy")
    print(output)
finally:
    docker.close()  # Stop and remove container

Port Mapping

from kiss.docker import DockerManager

# Map container port 8080 to host port 8080
with DockerManager(image_name="nginx", ports={80: 8080}) as docker:
    # Start a web server
    docker.run_bash_command("nginx", "Start nginx")
    
    # Get the actual host port (useful when Docker assigns a random port)
    host_port = docker.get_host_port(80)
    print(f"Server available at http://localhost:{host_port}")

Configuration Options

  • image_name: Docker image name (e.g., 'ubuntu', 'python:3.11')
  • tag: Image tag/version (default: 'latest')
  • workdir: Working directory inside the container (default: '/')
  • mount_shared_volume: Whether to mount a shared volume for file transfer (default: True)
  • ports: Port mapping from container to host (e.g., {8080: 8080})

The Docker manager automatically handles image pulling, container lifecycle, and cleanup of temporary directories.

πŸ“ Project Structure

kiss/
β”œβ”€β”€ src/kiss/
β”‚   β”œβ”€β”€ agents/          # Agent implementations
β”‚   β”‚   β”œβ”€β”€ create_and_optimize_agent/  # Agent evolution and improvement
β”‚   β”‚   β”‚   β”œβ”€β”€ agent_evolver.py        # Evolutionary agent optimization
β”‚   β”‚   β”‚   β”œβ”€β”€ improver_agent.py       # Agent improvement through generations
β”‚   β”‚   β”‚   β”œβ”€β”€ config.py               # Agent creator configuration
β”‚   β”‚   β”‚   β”œβ”€β”€ BLOG.md                 # Blog post about agent evolution
β”‚   β”‚   β”‚   └── README.md               # Agent creator documentation
β”‚   β”‚   β”œβ”€β”€ gepa/                   # GEPA (Genetic-Pareto) prompt optimizer
β”‚   β”‚   β”‚   β”œβ”€β”€ gepa.py
β”‚   β”‚   β”‚   β”œβ”€β”€ config.py           # GEPA configuration
β”‚   β”‚   β”‚   └── README.md           # GEPA documentation
β”‚   β”‚   β”œβ”€β”€ kiss_evolve/            # KISSEvolve evolutionary algorithm discovery
β”‚   β”‚   β”‚   β”œβ”€β”€ kiss_evolve.py
β”‚   β”‚   β”‚   β”œβ”€β”€ novelty_prompts.py  # Prompts for novelty-based evolution
β”‚   β”‚   β”‚   β”œβ”€β”€ config.py           # KISSEvolve configuration
β”‚   β”‚   β”‚   └── README.md           # KISSEvolve documentation
β”‚   β”‚   β”œβ”€β”€ coding_agents/          # Coding agents for software development tasks
β”‚   β”‚   β”‚   β”œβ”€β”€ kiss_coding_agent.py       # Multi-agent coding system with orchestration
β”‚   β”‚   β”‚   β”œβ”€β”€ relentless_coding_agent.py # Single-agent system with smart auto-continuation
β”‚   β”‚   β”‚   β”œβ”€β”€ claude_coding_agent.py     # Claude Coding Agent using Claude Agent SDK
β”‚   β”‚   β”‚   β”œβ”€β”€ optimize_agent.py          # Pareto frontier agent optimizer
β”‚   β”‚   β”‚   β”œβ”€β”€ print_to_console.py        # Console output formatting for Claude Coding Agent
β”‚   β”‚   β”‚   β”œβ”€β”€ print_to_browser.py        # Browser SSE streaming for Claude Coding Agent
β”‚   β”‚   β”‚   β”œβ”€β”€ gemini_cli_agent.py        # Gemini CLI Agent using Google ADK
β”‚   β”‚   β”‚   └── openai_codex_agent.py      # OpenAI Codex Agent using OpenAI Agents SDK
β”‚   β”‚   β”œβ”€β”€ self_evolving_multi_agent/  # Self-evolving multi-agent system
β”‚   β”‚   β”‚   β”œβ”€β”€ agent_evolver.py       # Agent evolution logic
β”‚   β”‚   β”‚   β”œβ”€β”€ multi_agent.py         # Multi-agent orchestration
β”‚   β”‚   β”‚   β”œβ”€β”€ config.py              # Configuration
β”‚   β”‚   β”‚   └── README.md              # Documentation
β”‚   β”‚   └── kiss.py                 # Utility agents (prompt refiner, bash agent)
β”‚   β”œβ”€β”€ core/            # Core framework components
β”‚   β”‚   β”œβ”€β”€ base.py            # Base class with common functionality for all KISS agents
β”‚   β”‚   β”œβ”€β”€ kiss_agent.py      # KISS agent with native function calling
β”‚   β”‚   β”œβ”€β”€ formatter.py       # Output formatting base class
β”‚   β”‚   β”œβ”€β”€ simple_formatter.py # Rich-formatted detailed output
β”‚   β”‚   β”œβ”€β”€ compact_formatter.py # Compact output with markdown stripping and AST-based tool parsing
β”‚   β”‚   β”œβ”€β”€ config.py          # Configuration
β”‚   β”‚   β”œβ”€β”€ config_builder.py  # Dynamic config builder with CLI support
β”‚   β”‚   β”œβ”€β”€ kiss_error.py      # Custom error class
β”‚   β”‚   β”œβ”€β”€ utils.py           # Utility functions (finish, resolve_path, is_subpath, etc.)
β”‚   β”‚   β”œβ”€β”€ useful_tools.py    # UsefulTools class with path-restricted Read, Write, Bash, Edit, search_web, fetch_url
β”‚   β”‚   └── models/            # Model implementations
β”‚   β”‚       β”œβ”€β”€ model.py           # Model interface with TokenCallback streaming support
β”‚   β”‚       β”œβ”€β”€ gemini_model.py    # Gemini model implementation
β”‚   β”‚       β”œβ”€β”€ openai_compatible_model.py # OpenAI-compatible API model (OpenAI, Together AI, OpenRouter)
β”‚   β”‚       β”œβ”€β”€ anthropic_model.py # Anthropic model implementation
β”‚   β”‚       └── model_info.py      # Model info: context lengths, pricing, and capabilities
β”‚   β”œβ”€β”€ docker/          # Docker integration
β”‚   β”‚   └── docker_manager.py
β”‚   β”œβ”€β”€ evals/            # Benchmark and evaluation integrations
β”‚   β”‚   β”œβ”€β”€ algotune/               # AlgoTune benchmark integration
β”‚   β”‚   β”‚   β”œβ”€β”€ run_algotune.py     # AlgoTune task evolution
β”‚   β”‚   β”‚   └── config.py           # AlgoTune configuration
β”‚   β”‚   β”œβ”€β”€ arvo_agent/             # ARVO vulnerability detection agent
β”‚   β”‚   β”‚   β”œβ”€β”€ arvo_agent.py       # Arvo-based vulnerability detector
β”‚   β”‚   β”‚   └── arvo_tags.json      # Docker image tags for Arvo
β”‚   β”‚   β”œβ”€β”€ hotpotqa/               # HotPotQA benchmark integration
β”‚   β”‚   β”‚   β”œβ”€β”€ hotpotqa_benchmark.py # HotPotQA benchmark runner
β”‚   β”‚   β”‚   └── README.md           # HotPotQA documentation
β”‚   β”‚   └── swe_agent_verified/     # SWE-bench Verified benchmark integration
β”‚   β”‚       β”œβ”€β”€ run_swebench.py     # Main runner with CLI support
β”‚   β”‚       β”œβ”€β”€ config.py           # Configuration for SWE-bench runs
β”‚   β”‚       └── README.md           # SWE-bench documentation
β”‚   β”œβ”€β”€ multiprocessing/ # Multiprocessing utilities
β”‚   β”‚   └── multiprocess.py
β”‚   β”œβ”€β”€ rag/             # RAG (Retrieval-Augmented Generation)
β”‚   β”‚   └── simple_rag.py # Simple RAG system with in-memory vector store
β”‚   β”œβ”€β”€ scripts/         # Utility scripts
β”‚   β”‚   β”œβ”€β”€ check.py                    # Code quality check script
β”‚   β”‚   β”œβ”€β”€ notebook.py                 # Jupyter notebook launcher and utilities
β”‚   β”‚   └── kissevolve_bubblesort.py    # KISSEvolve example: evolving bubble sort
β”‚   β”œβ”€β”€ tests/           # Test suite
β”‚   β”‚   β”œβ”€β”€ conftest.py              # Pytest configuration and fixtures
β”‚   β”‚   β”œβ”€β”€ test_kiss_agent_agentic.py
β”‚   β”‚   β”œβ”€β”€ test_kiss_agent_non_agentic.py
β”‚   β”‚   β”œβ”€β”€ test_kissevolve_bubblesort.py
β”‚   β”‚   β”œβ”€β”€ test_gepa_squad.py
β”‚   β”‚   β”œβ”€β”€ test_gepa_hotpotqa.py
β”‚   β”‚   β”œβ”€β”€ test_gepa_integration.py
β”‚   β”‚   β”œβ”€β”€ test_gepa_progress_callback.py # Tests for GEPA progress callbacks
β”‚   β”‚   β”œβ”€β”€ test_docker_manager.py
β”‚   β”‚   β”œβ”€β”€ test_model_config.py
β”‚   β”‚   β”œβ”€β”€ test_model_implementations.py  # Integration tests for model implementations
β”‚   β”‚   β”œβ”€β”€ test_a_model.py
β”‚   β”‚   β”œβ”€β”€ run_all_models_test.py # Comprehensive tests for all models
β”‚   β”‚   β”œβ”€β”€ test_multiprocess.py
β”‚   β”‚   β”œβ”€β”€ test_internal.py
β”‚   β”‚   β”œβ”€β”€ test_core_branch_coverage.py   # Branch coverage tests for core components
β”‚   β”‚   β”œβ”€β”€ test_gemini_model_internals.py # Tests for Gemini model internals
β”‚   β”‚   β”œβ”€β”€ test_cli_options.py            # Tests for CLI option parsing
β”‚   β”‚   β”œβ”€β”€ test_claude_coding_agent.py    # Tests for Claude Coding Agent
β”‚   β”‚   β”œβ”€β”€ test_gemini_cli_agent.py       # Tests for Gemini CLI Agent
β”‚   β”‚   β”œβ”€β”€ test_openai_codex_agent.py     # Tests for OpenAI Codex Agent
β”‚   β”‚   β”œβ”€β”€ test_agent_evolver.py          # Tests for Agent Evolver
β”‚   β”‚   β”œβ”€β”€ test_evolver_progress_callback.py # Tests for AgentEvolver progress callbacks
β”‚   β”‚   β”œβ”€β”€ test_token_callback.py         # Tests for async token streaming callback
β”‚   β”‚   β”œβ”€β”€ test_coding_agent_token_callback.py # Tests for token callback in coding agents
β”‚   β”‚   β”œβ”€β”€ test_compact_formatter.py        # Tests for CompactFormatter
β”‚   β”‚   β”œβ”€β”€ test_print_to_console.py         # Tests for ConsolePrinter (Claude Coding Agent output)
β”‚   β”‚   β”œβ”€β”€ test_print_to_browser.py         # Tests for BrowserPrinter (Claude Coding Agent browser output)
β”‚   β”‚   β”œβ”€β”€ test_search_web.py
β”‚   β”‚   └── test_useful_tools.py
β”‚   β”œβ”€β”€ py.typed          # PEP 561 marker for type checking
β”‚   └── viz_trajectory/  # Trajectory visualization
β”‚       β”œβ”€β”€ server.py                    # Flask server for trajectory visualization
β”‚       β”œβ”€β”€ README.md                    # Trajectory visualizer documentation
β”‚       └── templates/                   # HTML templates for the visualizer
β”‚           └── index.html
β”œβ”€β”€ scripts/             # Repository-level scripts
β”‚   └── release.sh       # Release script
β”œβ”€β”€ pyproject.toml       # Project configuration
└── README.md

🏷️ Versioning

The project uses semantic versioning (MAJOR.MINOR.PATCH). The version is defined in a single source of truth:

  • Version file: src/kiss/_version.py - Edit this file to update the version
  • Package access: kiss.__version__ - Access the version programmatically
  • Build system: pyproject.toml automatically reads the version from _version.py using dynamic versioning

Example:

from kiss import __version__
print(f"KISS version: {__version__}")

To update the version, simply edit src/kiss/_version.py:

__version__ = "0.1.9"  # Update to new version

βš™οΈ Configuration

Configuration is managed through environment variables and the DEFAULT_CONFIG object:

  • API Keys: Set GEMINI_API_KEY, OPENAI_API_KEY, ANTHROPIC_API_KEY, TOGETHER_API_KEY, and/or OPENROUTER_API_KEY environment variables
  • Agent Settings: Modify DEFAULT_CONFIG.agent in src/kiss/core/config.py:
    • max_steps: Maximum iterations in the ReAct loop (default: 100)
    • verbose: Enable verbose output (default: True)
    • debug: Enable debug mode (default: False)
    • max_agent_budget: Maximum budget per agent run in USD (default: 10.0)
    • global_max_budget: Maximum total budget across all agents in USD (default: 200.0)
    • use_web: Automatically add web browsing and search tool if enabled (default: True)
    • artifact_dir: Directory for agent artifacts (default: auto-generated with timestamp)
  • Relentless Coding Agent Settings: Modify DEFAULT_CONFIG.agent.relentless_coding_agent:
    • subtasker_model_name: Model for task execution (default: "claude-opus-4-6")
    • trials: Number of continuation attempts (default: 200)
    • max_steps: Maximum steps per trial (default: 200)
    • max_budget: Maximum budget in USD (default: 200.0)
  • KISS Coding Agent Settings: Modify DEFAULT_CONFIG.agent.kiss_coding_agent:
    • orchestrator_model_name: Model for orchestration and execution (default: "claude-sonnet-4-5")
    • subtasker_model_name: Model for subtask generation and execution (default: "claude-opus-4-6")
    • refiner_model_name: Model for prompt refinement on failures (default: "claude-sonnet-4-5")
    • trials: Number of retry attempts per task/subtask (default: 200)
    • max_steps: Maximum steps per agent (default: 200)
    • max_budget: Maximum budget in USD (default: 100.0)
  • GEPA Settings: Modify DEFAULT_CONFIG.gepa in src/kiss/agents/gepa/config.py:
    • reflection_model: Model to use for reflection (default: "gemini-3-flash-preview")
    • max_generations: Maximum number of evolutionary generations (default: 10)
    • population_size: Number of candidates to maintain in population (default: 8)
    • pareto_size: Maximum size of Pareto frontier (default: 4)
    • mutation_rate: Probability of mutating a prompt template (default: 0.5)
  • KISSEvolve Settings: Modify DEFAULT_CONFIG.kiss_evolve in src/kiss/agents/kiss_evolve/config.py:
    • max_generations: Maximum number of evolutionary generations (default: 10)
    • population_size: Number of variants to maintain in population (default: 8)
    • mutation_rate: Probability of mutating a variant (default: 0.7)
    • elite_size: Number of best variants to preserve each generation (default: 2)
    • num_islands: Number of islands for island-based evolution, 1 = disabled (default: 2)
    • migration_frequency: Number of generations between migrations (default: 5)
    • migration_size: Number of individuals to migrate between islands (default: 1)
    • migration_topology: Migration topology: 'ring', 'fully_connected', or 'random' (default: "ring")
    • enable_novelty_rejection: Enable code novelty rejection sampling (default: False)
    • novelty_threshold: Cosine similarity threshold for rejecting code (default: 0.95)
    • max_rejection_attempts: Maximum rejection attempts before accepting (default: 5)
    • parent_sampling_method: Parent sampling: 'tournament', 'power_law', or 'performance_novelty' (default: "power_law")
    • power_law_alpha: Power-law sampling parameter for rank-based selection (default: 1.0)
    • performance_novelty_lambda: Selection pressure parameter for sigmoid (default: 1.0)
  • Agent Creator Settings: Modify DEFAULT_CONFIG.create_and_optimize_agent in src/kiss/agents/create_and_optimize_agent/config.py:
    • Improver (DEFAULT_CONFIG.create_and_optimize_agent.improver):
      • model_name: LLM model to use for the improver agent (default: "claude-sonnet-4-5")
      • max_steps: Maximum steps for the improver agent (default: 100)
      • max_budget: Maximum budget in USD for the improver agent (default: 20.0)
    • Evolver (DEFAULT_CONFIG.create_and_optimize_agent.evolver):
      • model_name: LLM model to use for agent creation and improvement (default: "claude-sonnet-4-5")
      • max_generations: Maximum number of improvement generations (default: 10)
      • initial_frontier_size: Initial size of the Pareto frontier (default: 4)
      • max_frontier_size: Maximum size of the Pareto frontier (default: 6)
      • mutation_probability: Probability of mutation vs crossover, 1.0 = always mutate (default: 0.8)
      • initial_agent_max_steps: Maximum steps for creating the initial agent (default: 50)
      • initial_agent_max_budget: Maximum budget in USD for creating the initial agent (default: 50.0)
      • evolve_to_solve_task: Whether to evolve the agent to solve the task or be general purpose (default: False)
  • Self-Evolving Multi-Agent Settings: Modify DEFAULT_CONFIG.self_evolving_multi_agent in src/kiss/agents/self_evolving_multi_agent/config.py:
    • model: LLM model to use for the main agent (default: "gemini-3-flash-preview")
    • sub_agent_model: Model for sub-agents (default: "gemini-3-flash-preview")
    • evolver_model: Model for evolution (default: "gemini-3-flash-preview")
    • max_steps: Maximum orchestrator steps (default: 100)
    • max_budget: Maximum budget in USD (default: 10.0)
    • max_retries: Maximum retries on error (default: 3)
    • sub_agent_max_steps: Maximum steps for sub-agents (default: 50)
    • sub_agent_max_budget: Maximum budget for sub-agents in USD (default: 2.0)
    • docker_image: Docker image for execution (default: "python:3.12-slim")
    • workdir: Working directory in container (default: "/workspace")

πŸ› οΈ Available Commands

Development

  • uv sync - Install all dependencies (full installation)
  • uv sync --group dev - Install dev tools (mypy, ruff, pytest, jupyter, etc.)
  • uv sync --group <name> - Install specific dependency group (see Selective Installation)
  • uv build - Build the project package

Testing

  • uv run pytest - Run all tests (uses testpaths from pyproject.toml)
  • uv run pytest src/kiss/tests/ -v - Run all tests with verbose output
  • uv run pytest src/kiss/tests/test_kiss_agent_agentic.py -v - Run agentic agent tests
  • uv run pytest src/kiss/tests/test_kiss_agent_non_agentic.py -v - Run non-agentic agent tests
  • uv run pytest src/kiss/tests/test_multiprocess.py -v - Run multiprocessing tests
  • uv run python -m unittest src.kiss.tests.test_gepa_squad -v - Run GEPA Squad tests (unittest)
  • uv run python -m unittest src.kiss.tests.test_docker_manager -v - Run docker manager tests (unittest)
  • uv run python -m unittest discover -s src/kiss/tests -v - Run all tests using unittest

Code Quality

  • uv run check - Run all code quality checks (fresh dependency install, build, lint, and type check)
  • uv run check --clean - Run all code quality checks (fresh dependency install, build, lint, and type check after removing previous build options)
  • uv run ruff format src/ - Format code with ruff (line-length: 100, target: py313)
  • uv run ruff check src/ - Lint code with ruff (selects: E, F, W, I, N, UP)
  • uv run mypy src/ - Type check with mypy (python_version: 3.13)
  • uv run pyright src/ - Type check with pyright (alternative to mypy, stricter checking)

Notebook

  • uv run notebook --test - Test all imports and basic functionality
  • uv run notebook --lab - Open the tutorial notebook in JupyterLab (recommended)
  • uv run notebook --run - Open the tutorial notebook in Jupyter Notebook
  • uv run notebook --execute - Execute notebook cells and update outputs in place
  • uv run notebook --convert - Convert notebook to Python script

Cleanup

rm -rf build/ dist/ .pytest_cache .mypy_cache .ruff_cache && \
find . -type d -name __pycache__ -exec rm -r {} + && \
find . -type f -name "*.pyc" -delete

πŸ€– Models Supported

Supported Models: The framework includes context length, pricing, and capability flags for:

Generation Models (text generation with function calling support):

  • OpenAI: gpt-4.1, gpt-4.1-mini, gpt-4.1-nano, gpt-4o, gpt-4o-mini, gpt-4-turbo, gpt-4, gpt-5, gpt-5-mini, gpt-5-nano, gpt-5-pro, gpt-5.1, gpt-5.2, gpt-5.2-pro, gpt-5.3-codex
  • OpenAI (Codex): gpt-5-codex, gpt-5.1-codex, gpt-5.1-codex-max, gpt-5.1-codex-mini, gpt-5.2-codex, codex-mini-latest
  • OpenAI (Reasoning): o1, o1-mini, o1-pro, o3, o3-mini, o3-mini-high, o3-pro, o3-deep-research, o4-mini, o4-mini-high, o4-mini-deep-research
  • OpenAI (Open Source): openai/gpt-oss-20b, openai/gpt-oss-120b
  • Anthropic: claude-opus-4-6, claude-opus-4-5, claude-opus-4-1, claude-sonnet-4-5, claude-sonnet-4, claude-haiku-4-5
  • Anthropic (Legacy): claude-3-5-sonnet-20241022, claude-3-5-haiku-20241022, claude-3-opus-20240229, claude-3-sonnet-20240229, claude-3-haiku-20240307
  • Gemini: gemini-2.5-pro, gemini-2.5-flash, gemini-2.0-flash, gemini-2.0-flash-lite, gemini-1.5-pro, gemini-1.5-flash
  • Gemini (preview, unreliable function calling): gemini-3-pro-preview, gemini-3-flash-preview, gemini-2.5-flash-lite
  • Together AI (Llama): Llama-4-Scout/Maverick (with function calling), Llama-3.x series (generation only)
  • Together AI (Qwen): Qwen2.5-72B/7B-Instruct-Turbo, Qwen2.5-Coder-32B, Qwen2.5-VL-72B, Qwen3-235B series, Qwen3-Coder-480B, Qwen3-Coder-Next, Qwen3-Next-80B, Qwen3-VL-32B/8B, QwQ-32B (with function calling)
  • Together AI (DeepSeek): DeepSeek-R1, DeepSeek-V3-0324, DeepSeek-V3.1 (with function calling)
  • Together AI (Kimi/Moonshot): Kimi-K2-Instruct, Kimi-K2-Thinking, Kimi-K2.5
  • Together AI (Mistral): Ministral-3-14B, Mistral-7B-v0.2/v0.3, Mistral-Small-24B
  • Together AI (Other): GLM-4.5-Air/4.7, Nemotron-Nano-9B, Arcee (Coder-Large, Maestro-Reasoning, Virtuoso-Large, trinity-mini), DeepCogito (cogito-v2 series), google/gemma-2b/3n, Refuel-LLM-2, essentialai/rnj-1, marin-community/marin-8b
  • OpenRouter: Access to 400+ models from 60+ providers via unified API:
    • OpenAI (gpt-3.5-turbo, gpt-4, gpt-4-turbo, gpt-4.1, gpt-4o variants, gpt-5/5.1/5.2/5.3 and codex variants, o1, o3, o3-pro, o4-mini, codex-mini, gpt-oss, gpt-audio)
    • Anthropic (claude-3-haiku, claude-3.5-haiku/sonnet, claude-3.7-sonnet, claude-sonnet-4/4.5, claude-haiku-4.5, claude-opus-4/4.1/4.5/4.6)
    • Google (gemini-2.0-flash, gemini-2.5-flash/pro, gemini-3-flash/pro-preview, gemma-2-9b/27b, gemma-3-4b/12b/27b, gemma-3n-e4b)
    • Meta Llama (llama-3-8b/70b, llama-3.1-8b/70b/405b, llama-3.2-1b/3b/11b-vision, llama-3.3-70b, llama-4-maverick/scout, llama-guard-2/3/4)
    • DeepSeek (deepseek-chat/v3/v3.1/v3.2/v3.2-speciale, deepseek-r1/r1-0528/r1-turbo, deepseek-r1-distill variants, deepseek-coder-v2, deepseek-prover-v2)
    • Qwen (qwen-2.5-7b/72b, qwen-turbo/plus/max, qwen3-8b/14b/30b/32b/235b, qwen3-coder/coder-plus/coder-next/coder-flash, qwen3-vl variants, qwq-32b, qwen3-next/max)
    • Amazon Nova (nova-micro/lite/pro, nova-2-lite, nova-premier)
    • Cohere (command-r, command-r-plus, command-a, command-r7b)
    • X.AI Grok (grok-3/3-mini, grok-4/4-fast, grok-4.1-fast, grok-code-fast)
    • MiniMax (minimax-01, minimax-m1, minimax-m2/m2.1/m2-her)
    • ByteDance Seed (seed-1.6, seed-1.6-flash, seed-2.0, seed-2.0-thinking)
    • MoonshotAI (kimi-k2, kimi-k2-thinking, kimi-k2.5, kimi-dev-72b)
    • Mistral (codestral, devstral/devstral-medium/devstral-small, mistral-large/medium/small, mixtral-8x7b/8x22b, ministral-3b/8b/14b, pixtral, voxtral)
    • NVIDIA (llama-3.1-nemotron-70b/ultra-253b, llama-3.3-nemotron-super-49b, nemotron-nano-9b/12b-vl, nemotron-3-nano-30b)
    • Z.AI/GLM (glm-4-32b, glm-4.5/4.5-air/4.5v, glm-4.6/4.6v, glm-4.7/4.7-flash)
    • AllenAI (olmo-2/3-7b/32b-instruct/think, olmo-3.1-32b-instruct/think, molmo-2-8b)
    • Perplexity (sonar, sonar-pro, sonar-pro-search, sonar-deep-research, sonar-reasoning-pro)
    • NousResearch (hermes-2-pro/3/4-llama series, deephermes-3)
    • Baidu ERNIE (ernie-4.5 series including VL and thinking variants)
    • And 30+ more providers (ai21, aion-labs, arcee-ai, deepcogito, essentialai, ibm-granite, inception, inflection, liquid, morph, opengvlab, prime-intellect, relace, sao10k, stepfun, tencent, thedrummer, tngtech, upstage, writer, xiaomi, etc.)

Embedding Models (for RAG and semantic search):

  • OpenAI: text-embedding-3-small, text-embedding-3-large, text-embedding-ada-002
  • Google: text-embedding-004, gemini-embedding-001
  • Together AI: BAAI/bge-large-en-v1.5, BAAI/bge-base-en-v1.5, m2-bert-80M-32k-retrieval, multilingual-e5-large-instruct, gte-modernbert-base

Each model in MODEL_INFO includes capability flags:

  • is_function_calling_supported: Whether the model reliably supports tool/function calling
  • is_generation_supported: Whether the model supports text generation
  • is_embedding_supported: Whether the model is an embedding model

Note: Additional models can be used, but context length, pricing, and capability information must be added to src/kiss/core/models/model_info.py for accurate token tracking, budget monitoring, and test filtering.

Token counts are extracted directly from API responses, ensuring accuracy and supporting multiple agents sharing the same model instance.

Embedding Support

The framework provides embedding generation capabilities through the get_embedding() method on model instances:

  • OpenAI Models: Full embedding support via OpenAI's embeddings API
    • Default model: text-embedding-3-small (can be customized)
    • Usage: model.get_embedding(text, embedding_model="text-embedding-3-small")
  • Together AI Models: Full embedding support via Together AI's embeddings API
    • Default model: togethercomputer/m2-bert-80M-32k-retrieval (can be customized)
    • Usage: model.get_embedding(text, embedding_model="togethercomputer/m2-bert-80M-32k-retrieval")
  • Gemini Models: Full embedding support via Google's embedding API
    • Default model: text-embedding-004 (can be customized; gemini-embedding-001 also available)
    • Usage: model.get_embedding(text, embedding_model="text-embedding-004")
  • Anthropic Models: Embeddings not supported (raises NotImplementedError)

Embeddings are primarily used by the SimpleRAG system for document retrieval. When using SimpleRAG, ensure you use an OpenAI, Together AI, or Gemini model that supports embeddings.

πŸ€— Contributing

Contributions are welcome! Please ensure your code:

  • Follows the KISS principle
  • Passes all tests (uv run pytest)
  • Passes linting (uv run ruff check src/)
  • Passes type checking (uv run mypy src/)
  • Passes type checking (uv run pyright src/)

πŸ“„ License

Apache-2.0

✍️ Authors

For Tasks:

Click tags to check more tools for each tasks

For Jobs:

Alternative AI tools for kiss_ai

Similar Open Source Tools

For similar tasks

For similar jobs