aibydoing-feedback

aibydoing-feedback

动手实战人工智能系列教程,希望从监督学习开始,带你入门机器学习和深度学习。我尝试剖析和推导每一个基础算法的原理,将数学过程写出来,同时基于 Python 代码对公式进行实现,做到公式和代码的一一对应。与此同时,我也会利用主流的开源框架重复同样的过程,帮助读者看出手动实现和主流框架实现之间的区别。

Stars: 53

Visit
 screenshot

AI By Doing is a hands-on artificial intelligence tutorial series that aims to help beginners understand the principles of machine learning and deep learning while providing practical applications. The content covers various supervised and unsupervised learning algorithms, machine learning engineering, deep learning fundamentals, frameworks like TensorFlow and PyTorch, and applications in computer vision and natural language processing. The tutorials are written in Jupyter Notebook format, combining theory, mathematical derivations, and Python code implementations to facilitate learning and understanding.

README:

动手实战人工智能 AI By Doing

自序

我从 2015 年开始了解机器学习,最早从李航教授编写的《统计学习方法》入门,陆陆续续看了很多学习资料。在学习的过程中,我逐渐发现了一些痛点。

例如,很多由大学老师编写的书籍,偏理论研究,对于数学基础要求很高,对于初学者来说很难理解,同时缺少必要的代码实现。而部分由工程师编写的书,偏实践应用,往往只是介绍了一些工具和库的使用,而没有深入的讲解原理。另外,还有很多书籍都是在介绍算法的基础上,给出了一些代码例子,但是往往过程不完整,无法相互对应,理论和代码很割裂,同时读者很难复现。

入门机器学习的过程中,如果你只会调包,而不深入原理,可能连参数的作用都看不懂,更别说调参了。如果你只会理论,而不会实践,可能连最简单的模型都写不出来,学完似乎毫无实际用处。因此,我希望能够帮助你,既能够理解原理,又能够实践应用,学懂、吃透机器学习。

从 2018 年开始,我陆续使用 Jupyter Notebook 来编写这些内容。Jupyter Notebook 能够将文字和代码结合在一起,方便阅读和理解。同时,它也能够将代码和运行结果一起展示,方便读者实践和复现。

动手实战人工智能系列实验教程,希望从监督学习开始,带你入门机器学习和深度学习。我尝试剖析和推导每一个基础算法的原理,将数学过程写出来,同时基于 Python 代码对公式进行实现,做到公式和代码的一一对应。与此同时,我也会利用主流的开源框架重复同样的过程,帮助读者看出手动实现和主流框架实现之间的区别。

本内容默认你已经具备基础 Python 编程能力,同时学习过高等数学、线性代数、概率论等大学本科范围的数学知识。忘记了不用担心,会逐步帮助你记起来。当然,我也提供了《附录一:机器学习数学基础》和《附录二:机器学习常用工具》的内容供你参考。之所以放在附录中,原因是不建议你先复习或者学习这些内容,这会花费较多的时间,让你的耐心消磨殆尽。我建议你在学习的过程中,碰到不懂的地方,再去查阅这些内容。

学习本课程最好的方式是打开电脑动手实践,你也可以通过 Jupyter Notebook 把自己练习的代码和理解记录下来,形成自己的学习笔记。如果你只是浏览阅读,恐收效甚微。

目前,全文合计 97 章(421,112 字),仍在持续更新。希望在 AIGC 风靡的时代,由真人用心制作的内容能够帮助你更好地入门机器学习。

协议

该作品由 huhuhang 创作,采用 署名-非商业性使用-禁止演绎 4.0 国际 许可协议分发。

同时,补充规则如下:

  • 🚫 请勿克隆全站内容,建立类似站点;
  • 🚫 请勿整理全站内容,分发成电子书;
  • 🚫 请不要主动帮我「开源」全站内容;

我并不建议你转载,存档这些内容,这对于你真正学懂知识毫无帮助,而且会浪费你的时间。专注在学习本身,而不是收集。

目录

监督学习:回归

监督学习:分类

无监督学习:聚类

无监督学习:关联规则

机器学习工程:模型部署和推理

深度学习原理:人工神经网络

深度学习框架:TensorFlow & PyTorch

深度学习应用:计算机视觉

深度学习应用:自然语言处理

深度学习工程:模型部署和推理

强化学习基础

讨论

如果你有任何学习上的疑问,可以在页面最下方评论区留言,和我一起讨论。我会抽空回复你的问题,也欢迎你回答其他人的问题。

任何内容都不可能完美无缺,如果你发现内容错误,笔误,代码错误,可以在评论区指出,我会尽快抽空确认和修正。

致谢

排序不分先后:

贡献

如果你愿意参与内容的迭代更新和错误修正。请先在 GitHub 上提出新的 issue,并注明可以协助修订。我会确认后邀请你加入内容协作仓库。

For Tasks:

Click tags to check more tools for each tasks

For Jobs:

Alternative AI tools for aibydoing-feedback

Similar Open Source Tools

For similar tasks

For similar jobs