![scikit-decide](/statics/github-mark.png)
scikit-decide
AI framework for Reinforcement Learning, Automated Planning and Scheduling
Stars: 139
![screenshot](/screenshots_githubs/airbus-scikit-decide.jpg)
Scikit-decide is an AI framework for Reinforcement Learning, Automated Planning and Scheduling. It provides a unified interface to define and solve decision-making problems, making it easy to switch between different algorithms and domains.
README:
_ __ _ __ __ _ __
_____ _____ (_)/ /__ (_)/ /_ ____/ /___ _____ (_)____/ /___
/ ___// ___// // //_// // __/______ / __ // _ \ / ___// // __ // _ \
(__ )/ /__ / // ,< / // /_ /_____// /_/ // __// /__ / // /_/ // __/
/____/ \___//_//_/|_|/_/ \__/ \__,_/ \___/ \___//_/ \__,_/ \___/
Scikit-decide is an AI framework for Reinforcement Learning, Automated Planning and Scheduling.
This framework was initiated at Airbus AI Research and notably received contributions through the ANITI and TUPLES projects, and also from ANU.
Quick version:
pip install scikit-decide[all]
For more details, see the online documentation.
The latest documentation is available online.
Some educational notebooks are available in notebooks/
folder.
Links to launch them online with binder are provided in the
Notebooks section of the online documentation.
More examples can be found as Python scripts in the examples/
folder, showing how to import or define a domain,
and how to run or solve it. Most of the examples rely on scikit-decide Hub, an extensible catalog of domains/solvers.
See more about how to contribute in the online documentation.
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for scikit-decide
Similar Open Source Tools
![scikit-decide Screenshot](/screenshots_githubs/airbus-scikit-decide.jpg)
scikit-decide
Scikit-decide is an AI framework for Reinforcement Learning, Automated Planning and Scheduling. It provides a unified interface to define and solve decision-making problems, making it easy to switch between different algorithms and domains.
![lightning-bolts Screenshot](/screenshots_githubs/Lightning-Universe-lightning-bolts.jpg)
lightning-bolts
Bolts package provides a variety of components to extend PyTorch Lightning, such as callbacks & datasets, for applied research and production. Users can accelerate Lightning training with the Torch ORT Callback to optimize ONNX graph for faster training & inference. Additionally, users can introduce sparsity with the SparseMLCallback to accelerate inference by leveraging the DeepSparse engine. Specific research implementations are encouraged, with contributions that help train SSL models and integrate with Lightning Flash for state-of-the-art models in applied research.
![moai Screenshot](/screenshots_githubs/moverseai-moai.jpg)
moai
moai is a PyTorch-based AI Model Development Kit (MDK) designed to improve data-driven model workflows, design, and understanding. It offers modularity via monads for model building blocks, reproducibility via configuration-based design, productivity via a data-driven domain modelling language (DML), extensibility via plugins, and understanding via inter-model performance and design aggregation. The tool provides specific integrated actions like play, train, evaluate, plot, diff, and reprod to support heavy data-driven workflows with analytics, knowledge extraction, and reproduction. moai relies on PyTorch, Lightning, Hydra, TorchServe, ONNX, Visdom, HiPlot, Kornia, Albumentations, and the wider open-source community for its functionalities.
![tock Screenshot](/screenshots_githubs/theopenconversationkit-tock.jpg)
tock
Tock is an open conversational AI platform for building bots. It offers a natural language processing open source stack compatible with various tools, a user interface for building stories and analytics, a conversational DSL for different programming languages, built-in connectors for text/voice channels, toolkits for custom web/mobile integration, and the ability to deploy anywhere in the cloud or on-premise with Docker.
![bark.cpp Screenshot](/screenshots_githubs/PABannier-bark.cpp.jpg)
bark.cpp
Bark.cpp is a C/C++ implementation of the Bark model, a real-time, multilingual text-to-speech generation model. It supports AVX, AVX2, and AVX512 for x86 architectures, and is compatible with both CPU and GPU backends. Bark.cpp also supports mixed F16/F32 precision and 4-bit, 5-bit, and 8-bit integer quantization. It can be used to generate realistic-sounding audio from text prompts.
![RD-Agent Screenshot](/screenshots_githubs/microsoft-RD-Agent.jpg)
RD-Agent
RD-Agent is a tool designed to automate critical aspects of industrial R&D processes, focusing on data-driven scenarios to streamline model and data development. It aims to propose new ideas ('R') and implement them ('D') automatically, leading to solutions of significant industrial value. The tool supports scenarios like Automated Quantitative Trading, Data Mining Agent, Research Copilot, and more, with a framework to push the boundaries of research in data science. Users can create a Conda environment, install the RDAgent package from PyPI, configure GPT model, and run various applications for tasks like quantitative trading, model evolution, medical prediction, and more. The tool is intended to enhance R&D processes and boost productivity in industrial settings.
![autogen Screenshot](/screenshots_githubs/microsoft-autogen.jpg)
autogen
AutoGen is a framework that enables the development of LLM applications using multiple agents that can converse with each other to solve tasks. AutoGen agents are customizable, conversable, and seamlessly allow human participation. They can operate in various modes that employ combinations of LLMs, human inputs, and tools.
![incubator-kie-optaplanner Screenshot](/screenshots_githubs/apache-incubator-kie-optaplanner.jpg)
incubator-kie-optaplanner
A fast, easy-to-use, open source AI constraint solver for software developers. OptaPlanner is a powerful tool that helps developers solve complex optimization problems by providing a constraint satisfaction solver. It allows users to model and solve planning and scheduling problems efficiently, improving decision-making processes and resource allocation. With OptaPlanner, developers can easily integrate optimization capabilities into their applications, leading to better performance and cost-effectiveness.
![modelscope-agent Screenshot](/screenshots_githubs/modelscope-modelscope-agent.jpg)
modelscope-agent
ModelScope-Agent is a customizable and scalable Agent framework. A single agent has abilities such as role-playing, LLM calling, tool usage, planning, and memory. It mainly has the following characteristics: - **Simple Agent Implementation Process**: Simply specify the role instruction, LLM name, and tool name list to implement an Agent application. The framework automatically arranges workflows for tool usage, planning, and memory. - **Rich models and tools**: The framework is equipped with rich LLM interfaces, such as Dashscope and Modelscope model interfaces, OpenAI model interfaces, etc. Built in rich tools, such as **code interpreter**, **weather query**, **text to image**, **web browsing**, etc., make it easy to customize exclusive agents. - **Unified interface and high scalability**: The framework has clear tools and LLM registration mechanism, making it convenient for users to expand more diverse Agent applications. - **Low coupling**: Developers can easily use built-in tools, LLM, memory, and other components without the need to bind higher-level agents.
![lagent Screenshot](/screenshots_githubs/InternLM-lagent.jpg)
lagent
Lagent is a lightweight open-source framework that allows users to efficiently build large language model(LLM)-based agents. It also provides some typical tools to augment LLM. The overview of our framework is shown below:
![swarmauri-sdk Screenshot](/screenshots_githubs/swarmauri-swarmauri-sdk.jpg)
swarmauri-sdk
Swarmauri SDK is a repository containing core interfaces, standard ABCs, and standard concrete references of the SwarmaURI Framework. It provides a set of tools and functionalities for developers to work with the SwarmaURI ecosystem. The SDK aims to streamline the development process and enhance the interoperability of applications within the framework. Developers can easily integrate SwarmaURI features into their projects by leveraging the resources available in this repository.
![llm-interface Screenshot](/screenshots_githubs/samestrin-llm-interface.jpg)
llm-interface
LLM Interface is an npm module that streamlines interactions with various Large Language Model (LLM) providers in Node.js applications. It offers a unified interface for switching between providers and models, supporting 36 providers and hundreds of models. Features include chat completion, streaming, error handling, extensibility, response caching, retries, JSON output, and repair. The package relies on npm packages like axios, @google/generative-ai, dotenv, jsonrepair, and loglevel. Installation is done via npm, and usage involves sending prompts to LLM providers. Tests can be run using npm test. Contributions are welcome under the MIT License.
![complexity Screenshot](/screenshots_githubs/pnd280-complexity.jpg)
complexity
Complexity is a community-driven, open-source, and free third-party extension that enhances the features of Perplexity.ai. It provides various UI/UX/QoL tweaks, LLM/Image gen model selectors, a customizable theme, and a prompts library. The tool intercepts network traffic to alter the behavior of the host page, offering a solution to the limitations of Perplexity.ai. Users can install Complexity from Chrome Web Store, Mozilla Add-on, or build it from the source code.
![liboai Screenshot](/screenshots_githubs/D7EAD-liboai.jpg)
liboai
liboai is a simple C++17 library for the OpenAI API, providing developers with access to OpenAI endpoints through a collection of methods and classes. It serves as a spiritual port of OpenAI's Python library, 'openai', with similar structure and features. The library supports various functionalities such as ChatGPT, Audio, Azure, Functions, Image DALL·E, Models, Completions, Edit, Embeddings, Files, Fine-tunes, Moderation, and Asynchronous Support. Users can easily integrate the library into their C++ projects to interact with OpenAI services.
![BrowserGym Screenshot](/screenshots_githubs/ServiceNow-BrowserGym.jpg)
BrowserGym
BrowserGym is an open, easy-to-use, and extensible framework designed to accelerate web agent research. It provides benchmarks like MiniWoB, WebArena, VisualWebArena, WorkArena, AssistantBench, and WebLINX. Users can design new web benchmarks by inheriting the AbstractBrowserTask class. The tool allows users to install different packages for core functionalities, experiments, and specific benchmarks. It supports the development setup and offers boilerplate code for running agents on various tasks. BrowserGym is not a consumer product and should be used with caution.
![yolo-flutter-app Screenshot](/screenshots_githubs/ultralytics-yolo-flutter-app.jpg)
yolo-flutter-app
Ultralytics YOLO for Flutter is a Flutter plugin that allows you to integrate Ultralytics YOLO computer vision models into your mobile apps. It supports both Android and iOS platforms, providing APIs for object detection and image classification. The plugin leverages Flutter Platform Channels for seamless communication between the client and host, handling all processing natively. Before using the plugin, you need to export the required models in `.tflite` and `.mlmodel` formats. The plugin provides support for tasks like detection and classification, with specific instructions for Android and iOS platforms. It also includes features like camera preview and methods for object detection and image classification on images. Ultralytics YOLO thrives on community collaboration and offers different licensing paths for open-source and commercial use cases.
For similar tasks
![scikit-decide Screenshot](/screenshots_githubs/airbus-scikit-decide.jpg)
scikit-decide
Scikit-decide is an AI framework for Reinforcement Learning, Automated Planning and Scheduling. It provides a unified interface to define and solve decision-making problems, making it easy to switch between different algorithms and domains.
For similar jobs
![weave Screenshot](/screenshots_githubs/wandb-weave.jpg)
weave
Weave is a toolkit for developing Generative AI applications, built by Weights & Biases. With Weave, you can log and debug language model inputs, outputs, and traces; build rigorous, apples-to-apples evaluations for language model use cases; and organize all the information generated across the LLM workflow, from experimentation to evaluations to production. Weave aims to bring rigor, best-practices, and composability to the inherently experimental process of developing Generative AI software, without introducing cognitive overhead.
![agentcloud Screenshot](/screenshots_githubs/rnadigital-agentcloud.jpg)
agentcloud
AgentCloud is an open-source platform that enables companies to build and deploy private LLM chat apps, empowering teams to securely interact with their data. It comprises three main components: Agent Backend, Webapp, and Vector Proxy. To run this project locally, clone the repository, install Docker, and start the services. The project is licensed under the GNU Affero General Public License, version 3 only. Contributions and feedback are welcome from the community.
![oss-fuzz-gen Screenshot](/screenshots_githubs/google-oss-fuzz-gen.jpg)
oss-fuzz-gen
This framework generates fuzz targets for real-world `C`/`C++` projects with various Large Language Models (LLM) and benchmarks them via the `OSS-Fuzz` platform. It manages to successfully leverage LLMs to generate valid fuzz targets (which generate non-zero coverage increase) for 160 C/C++ projects. The maximum line coverage increase is 29% from the existing human-written targets.
![LLMStack Screenshot](/screenshots_githubs/trypromptly-LLMStack.jpg)
LLMStack
LLMStack is a no-code platform for building generative AI agents, workflows, and chatbots. It allows users to connect their own data, internal tools, and GPT-powered models without any coding experience. LLMStack can be deployed to the cloud or on-premise and can be accessed via HTTP API or triggered from Slack or Discord.
![VisionCraft Screenshot](/screenshots_githubs/VisionCraft-org-VisionCraft.jpg)
VisionCraft
The VisionCraft API is a free API for using over 100 different AI models. From images to sound.
![kaito Screenshot](/screenshots_githubs/Azure-kaito.jpg)
kaito
Kaito is an operator that automates the AI/ML inference model deployment in a Kubernetes cluster. It manages large model files using container images, avoids tuning deployment parameters to fit GPU hardware by providing preset configurations, auto-provisions GPU nodes based on model requirements, and hosts large model images in the public Microsoft Container Registry (MCR) if the license allows. Using Kaito, the workflow of onboarding large AI inference models in Kubernetes is largely simplified.
![PyRIT Screenshot](/screenshots_githubs/Azure-PyRIT.jpg)
PyRIT
PyRIT is an open access automation framework designed to empower security professionals and ML engineers to red team foundation models and their applications. It automates AI Red Teaming tasks to allow operators to focus on more complicated and time-consuming tasks and can also identify security harms such as misuse (e.g., malware generation, jailbreaking), and privacy harms (e.g., identity theft). The goal is to allow researchers to have a baseline of how well their model and entire inference pipeline is doing against different harm categories and to be able to compare that baseline to future iterations of their model. This allows them to have empirical data on how well their model is doing today, and detect any degradation of performance based on future improvements.
![Azure-Analytics-and-AI-Engagement Screenshot](/screenshots_githubs/microsoft-Azure-Analytics-and-AI-Engagement.jpg)
Azure-Analytics-and-AI-Engagement
The Azure-Analytics-and-AI-Engagement repository provides packaged Industry Scenario DREAM Demos with ARM templates (Containing a demo web application, Power BI reports, Synapse resources, AML Notebooks etc.) that can be deployed in a customer’s subscription using the CAPE tool within a matter of few hours. Partners can also deploy DREAM Demos in their own subscriptions using DPoC.