
voltagent
Open Source TypeScript AI Agent Framework
Stars: 3390

VoltAgent is an open-source TypeScript framework designed for building and orchestrating AI agents. It simplifies the development of AI agent applications by providing modular building blocks, standardized patterns, and abstractions. Whether you're creating chatbots, virtual assistants, automated workflows, or complex multi-agent systems, VoltAgent handles the underlying complexity, allowing developers to focus on defining their agents' capabilities and logic. The framework offers ready-made building blocks, such as the Core Engine, Multi-Agent Systems, Workflow Engine, Extensible Packages, Tooling & Integrations, Data Retrieval & RAG, Memory management, LLM Compatibility, and a Developer Ecosystem. VoltAgent empowers developers to build sophisticated AI applications faster and more reliably, avoiding repetitive setup and the limitations of simpler tools.
README:
Escape the limitations of no-code builders and the complexity of starting from scratch.
An AI Agent Framework provides the foundational structure and tools needed to build applications powered by autonomous agents. These agents, often driven by Large Language Models (LLMs), can perceive their environment, make decisions, and take actions to achieve specific goals. Building such agents from scratch involves managing complex interactions with LLMs, handling state, connecting to external tools and data, and orchestrating workflows.
VoltAgent is an open-source TypeScript framework that acts as this essential toolkit. It simplifies the development of AI agent applications by providing modular building blocks, standardized patterns, and abstractions. Whether you're creating chatbots, virtual assistants, automated workflows, or complex multi-agent systems, VoltAgent handles the underlying complexity, allowing you to focus on defining your agents' capabilities and logic.
Instead of building everything from scratch, VoltAgent provides ready-made, modular building blocks:
-
Core Engine (
@voltagent/core
): The heart of VoltAgent, providing fundamental capabilities for your AI agents Define individual agents with specific roles, tools, and memory. - Multi-Agent Systems: Architect complex applications by coordinating multiple specialized agents using Supervisors.
- Workflow Engine: Go beyond simple request-response. Orchestrate multi-step automations that can process data, call APIs, run tasks in parallel, and execute conditional logic.
-
Extensible Packages: Enhance functionality with packages like
@voltagent/voice
for voice interactions. - Tooling & Integrations: Equip agents with tools to connect to external APIs, databases, and services, enabling them to perform real-world tasks. Supports the Model Context Protocol (MCP) for standardized tool interactions.
- Data Retrieval & RAG: Implement specialized retriever agents for efficient information fetching and Retrieval-Augmented Generation (RAG).
- Memory: Enable agents to remember past interactions for more natural and context-aware conversations.
- LLM Compatibility: Works with popular AI models from OpenAI, Google, Anthropic, and more, allowing easy switching.
-
Developer Ecosystem: Includes helpers like
create-voltagent-app
,@voltagent/cli
, and the visual VoltOps LLM Observability Platform for quick setup, monitoring, and debugging.
In essence, VoltAgent helps developers build sophisticated AI applications faster and more reliably, avoiding repetitive setup and the limitations of simpler tools.
Building AI applications often involves a trade-off:
- DIY Approach: Using basic AI provider tools offers control but leads to complex, hard-to-manage code and repeated effort.
- No-Code Builders: Simpler initially but often restrictive, limiting customization, provider choice, and complexity.
VoltAgent provides a middle ground, offering structure and components without sacrificing flexibility:
- Build Faster: Accelerate development with pre-built components compared to starting from scratch.
- Maintainable Code: Encourages organization for easier updates and debugging.
- Scalability: Start simple and easily scale to complex, multi-agent systems handling intricate workflows.
- Build Sophisticated Automations: It's not just for chat. The workflow engine lets you build complex, multi-step processes for tasks like data analysis pipelines, automated content generation, or intelligent decision-making systems.
- Flexibility: Full control over agent behavior, LLM choice, tool integrations, and UI connections.
- Avoid Lock-in: Freedom to switch AI providers and models as needed.
- Cost Efficiency: Features designed to optimize AI service usage and reduce redundant calls.
- Visual Monitoring: Use the VoltOps LLM Observability Platform to track agent performance, inspect state, and debug visually.
VoltAgent empowers developers to build their envisioned AI applications efficiently, from simple helpers to complex systems.
Create a new VoltAgent project in seconds using the create-voltagent-app
CLI tool:
npm create voltagent-app@latest
This command guides you through setup.
You'll see the starter code in src/index.ts
, which now registers both an agent and a comprehensive workflow example found in src/workflows/index.ts
.
import { VoltAgent, Agent, Memory } from "@voltagent/core";
import { LibSQLMemoryAdapter } from "@voltagent/libsql";
import { createPinoLogger } from "@voltagent/logger";
import { honoServer } from "@voltagent/server-hono";
import { openai } from "@ai-sdk/openai";
import { expenseApprovalWorkflow } from "./workflows";
import { weatherTool } from "./tools";
// Create a logger instance
const logger = createPinoLogger({
name: "my-agent-app",
level: "info",
});
// Optional persistent memory (remove to use default in-memory)
const memory = new Memory({
storage: new LibSQLMemoryAdapter({ url: "file:./.voltagent/memory.db" }),
});
// A simple, general-purpose agent for the project.
const agent = new Agent({
name: "my-agent",
instructions: "A helpful assistant that can check weather and help with various tasks",
model: openai("gpt-4o-mini"),
tools: [weatherTool],
memory,
});
// Initialize VoltAgent with your agent(s) and workflow(s)
new VoltAgent({
agents: {
agent,
},
workflows: {
expenseApprovalWorkflow,
},
server: honoServer(),
logger,
});
Afterwards, navigate to your project and run:
npm run dev
When you run the dev command, tsx will compile and run your code. You should see the VoltAgent server startup message in your terminal:
══════════════════════════════════════════════════
VOLTAGENT SERVER STARTED SUCCESSFULLY
══════════════════════════════════════════════════
✓ HTTP Server: http://localhost:3141
Test your agents with VoltOps Console: https://console.voltagent.dev
══════════════════════════════════════════════════
Your agent is now running! To interact with it:
- Open the Console: Click the VoltOps LLM Observability Platform link in your terminal output (or copy-paste it into your browser).
- Find Your Agent: On the VoltOps LLM Observability Platform page, you should see your agent listed (e.g., "my-agent").
- Open Agent Details: Click on your agent's name.
- Start Chatting: On the agent detail page, click the chat icon in the bottom right corner to open the chat window.
- Send a Message: Type a message like "Hello" and press Enter.
Your new project also includes a powerful workflow engine. You can test the pre-built expenseApprovalWorkflow
directly from the VoltOps console:
- Go to the Workflows Page: After starting your server, go directly to the Workflows page.
- Select Your Project: Use the project selector to choose your project (e.g., "my-agent-app").
- Find and Run: You will see "Expense Approval Workflow" listed. Click it, then click the "Run" button.
-
Provide Input: The workflow expects a JSON object with expense details. Try a small expense for automatic approval:
{ "employeeId": "EMP-123", "amount": 250, "category": "office-supplies", "description": "New laptop mouse and keyboard" }
- View the Results: After execution, you can inspect the detailed logs for each step and see the final output directly in the console.
- Agent Core: Define agents with descriptions, LLM providers, tools, and memory management.
-
Workflow Engine: Orchestrate complex, multi-step automations with a powerful and declarative API (
andThen
,andAgent
,andAll
,andRace
,andWhen
). - Multi-Agent Systems: Build complex workflows using Supervisor Agents coordinating multiple specialized Sub-Agents.
- Tool Usage & Lifecycle: Equip agents with custom or pre-built tools (functions) with type-safety (Zod), lifecycle hooks, and cancellation support to interact with external systems.
- Flexible LLM Support: Integrate seamlessly with various LLM providers (OpenAI, Anthropic, Google, etc.) and easily switch between models.
- Memory Management: Enable agents to retain context across interactions using different configurable memory providers.
- Observability & Debugging: Visually monitor agent states, interactions, logs, and performance via the VoltOps LLM Observability Platform.
- Custom API Endpoints: Extend the VoltAgent API server with your own custom endpoints to build specialized functionality on top of the core framework.
-
Voice Interaction: Build voice-enabled agents capable of speech recognition and synthesis using the
@voltagent/voice
package. - Data Retrieval & RAG: Integrate specialized retriever agents for efficient information fetching and Retrieval-Augmented Generation (RAG) from various sources.
- Model Context Protocol (MCP) Support: Connect to external tool servers (HTTP/stdio) adhering to the MCP standard for extended capabilities.
-
Prompt Engineering Tools: Leverage utilities like
createPrompt
for crafting and managing effective prompts for your agents. - Framework Compatibility: Designed for easy integration into existing Node.js applications and popular frameworks.
VoltAgent is versatile and can power a wide range of AI-driven applications:
- Complex Workflow Automation: Orchestrate multi-step processes involving various tools, APIs, and decision points using coordinated agents.
- Intelligent Data Pipelines: Build agents that fetch, process, analyze, and transform data from diverse sources.
- AI-Powered Internal Tools & Dashboards: Create interactive internal applications that leverage AI for analysis, reporting, or task automation, often integrated with UIs using hooks.
- Automated Customer Support Agents: Develop sophisticated chatbots that can understand context (memory), use tools (e.g., check order status), and escalate complex issues.
- Repository Analysis & Codebase Automation: Analyze code repositories, automate refactoring tasks, generate documentation, or manage CI/CD processes.
- Retrieval-Augmented Generation (RAG) Systems: Build agents that retrieve relevant information from knowledge bases (using retriever agents) before generating informed responses.
-
Voice-Controlled Interfaces & Applications: Utilize the
@voltagent/voice
package to create applications that respond to and generate spoken language. - Personalized User Experiences: Develop agents that adapt responses and actions based on user history and preferences stored in memory.
- Real-time Monitoring & Alerting: Design agents that continuously monitor data streams or systems and trigger actions or notifications based on defined conditions.
- And Virtually Anything Else...: If you can imagine an AI agent doing it, VoltAgent can likely help you build it! ⚡
- Documentation: Dive into guides, concepts, and tutorials.
- Examples: Explore practical implementations.
- Blog: Read more about technical insights, and best practices.
We welcome contributions! Please refer to the contribution guidelines (link needed if available). Join our Discord server for questions and discussions.
Big thanks to everyone who's been part of the VoltAgent journey, whether you've built a plugin, opened an issue, dropped a pull request, or just helped someone out on Discord or GitHub Discussions.
VoltAgent is a community effort, and it keeps getting better because of people like you.
Your stars help us reach more developers! If you find VoltAgent useful, please consider giving us a star on GitHub to support the project and help others discover it.
Licensed under the MIT License, Copyright © 2025-present VoltAgent.
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for voltagent
Similar Open Source Tools

voltagent
VoltAgent is an open-source TypeScript framework designed for building and orchestrating AI agents. It simplifies the development of AI agent applications by providing modular building blocks, standardized patterns, and abstractions. Whether you're creating chatbots, virtual assistants, automated workflows, or complex multi-agent systems, VoltAgent handles the underlying complexity, allowing developers to focus on defining their agents' capabilities and logic. The framework offers ready-made building blocks, such as the Core Engine, Multi-Agent Systems, Workflow Engine, Extensible Packages, Tooling & Integrations, Data Retrieval & RAG, Memory management, LLM Compatibility, and a Developer Ecosystem. VoltAgent empowers developers to build sophisticated AI applications faster and more reliably, avoiding repetitive setup and the limitations of simpler tools.

wingman
The LLM Platform, also known as Inference Hub, is an open-source tool designed to simplify the development and deployment of large language model applications at scale. It provides a unified framework for integrating and managing multiple LLM vendors, models, and related services through a flexible approach. The platform supports various LLM providers, document processing, RAG, advanced AI workflows, infrastructure operations, and flexible configuration using YAML files. Its modular and extensible architecture allows developers to plug in different providers and services as needed. Key components include completers, embedders, renderers, synthesizers, transcribers, document processors, segmenters, retrievers, summarizers, translators, AI workflows, tools, and infrastructure components. Use cases range from enterprise AI applications to scalable LLM deployment and custom AI pipelines. Integrations with LLM providers like OpenAI, Azure OpenAI, Anthropic, Google Gemini, AWS Bedrock, Groq, Mistral AI, xAI, Hugging Face, and more are supported.

ai-manus
AI Manus is a general-purpose AI Agent system that supports running various tools and operations in a sandbox environment. It offers deployment with minimal dependencies, supports multiple tools like Terminal, Browser, File, Web Search, and messaging tools, allocates separate sandboxes for tasks, manages session history, supports stopping and interrupting conversations, file upload and download, and is multilingual. The system also provides user login and authentication. The project primarily relies on Docker for development and deployment, with model capability requirements and recommended Deepseek and GPT models.

arcade-ai
Arcade AI is a developer-focused tooling and API platform designed to enhance the capabilities of LLM applications and agents. It simplifies the process of connecting agentic applications with user data and services, allowing developers to concentrate on building their applications. The platform offers prebuilt toolkits for interacting with various services, supports multiple authentication providers, and provides access to different language models. Users can also create custom toolkits and evaluate their tools using Arcade AI. Contributions are welcome, and self-hosting is possible with the provided documentation.

cagent
cagent is a powerful and easy-to-use multi-agent runtime that orchestrates AI agents with specialized capabilities and tools, allowing users to quickly build, share, and run a team of virtual experts to solve complex problems. It supports creating agents with YAML configuration, improving agents with MCP servers, and delegating tasks to specialists. Key features include multi-agent architecture, rich tool ecosystem, smart delegation, YAML configuration, advanced reasoning tools, and support for multiple AI providers like OpenAI, Anthropic, Gemini, and Docker Model Runner.

atomic-agents
The Atomic Agents framework is a modular and extensible tool designed for creating powerful applications. It leverages Pydantic for data validation and serialization. The framework follows the principles of Atomic Design, providing small and single-purpose components that can be combined. It integrates with Instructor for AI agent architecture and supports various APIs like Cohere, Anthropic, and Gemini. The tool includes documentation, examples, and testing features to ensure smooth development and usage.

foundationallm
FoundationaLLM is a platform designed for deploying, scaling, securing, and governing generative AI in enterprises. It allows users to create AI agents grounded in enterprise data, integrate REST APIs, experiment with various large language models, centrally manage AI agents and their assets, deploy scalable vectorization data pipelines, enable non-developer users to create their own AI agents, control access with role-based access controls, and harness capabilities from Azure AI and Azure OpenAI. The platform simplifies integration with enterprise data sources, provides fine-grain security controls, scalability, extensibility, and addresses the challenges of delivering enterprise copilots or AI agents.

agents
Cloudflare Agents is a framework for building intelligent, stateful agents that persist, think, and evolve at the edge of the network. It allows for maintaining persistent state and memory, real-time communication, processing and learning from interactions, autonomous operation at global scale, and hibernating when idle. The project is actively evolving with focus on core agent framework, WebSocket communication, HTTP endpoints, React integration, and basic AI chat capabilities. Future developments include advanced memory systems, WebRTC for audio/video, email integration, evaluation framework, enhanced observability, and self-hosting guide.

tools
Strands Agents Tools is a community-driven project that provides a powerful set of tools for your agents to use. It bridges the gap between large language models and practical applications by offering ready-to-use tools for file operations, system execution, API interactions, mathematical operations, and more. The tools cover a wide range of functionalities including file operations, shell integration, memory storage, web infrastructure, HTTP client, Slack client, Python execution, mathematical tools, AWS integration, image and video processing, audio output, environment management, task scheduling, advanced reasoning, swarm intelligence, dynamic MCP client, parallel tool execution, browser automation, diagram creation, RSS feed management, and computer automation.

authed
Authed is an identity and authentication system designed for AI agents, providing unique identities, secure agent-to-agent authentication, and dynamic access policies. It eliminates the need for static credentials and human intervention in authentication workflows. The protocol is developer-first, open-source, and scalable, enabling AI agents to interact securely across different ecosystems and organizations.

req_llm
ReqLLM is a Req-based library for LLM interactions, offering a unified interface to AI providers through a plugin-based architecture. It brings composability and middleware advantages to LLM interactions, with features like auto-synced providers/models, typed data structures, ergonomic helpers, streaming capabilities, usage & cost extraction, and a plugin-based provider system. Users can easily generate text, structured data, embeddings, and track usage costs. The tool supports various AI providers like Anthropic, OpenAI, Groq, Google, and xAI, and allows for easy addition of new providers. ReqLLM also provides API key management, detailed documentation, and a roadmap for future enhancements.

deepflow
DeepFlow is an open-source project that provides deep observability for complex cloud-native and AI applications. It offers Zero Code data collection with eBPF for metrics, distributed tracing, request logs, and function profiling. DeepFlow is integrated with SmartEncoding to achieve Full Stack correlation and efficient access to all observability data. With DeepFlow, cloud-native and AI applications automatically gain deep observability, removing the burden of developers continually instrumenting code and providing monitoring and diagnostic capabilities covering everything from code to infrastructure for DevOps/SRE teams.

suna
Kortix is an open-source platform designed to build, manage, and train AI agents for various tasks. It allows users to create autonomous agents, from general-purpose assistants to specialized automation tools. The platform offers capabilities such as browser automation, file management, web intelligence, system operations, API integrations, and agent building tools. Users can create custom agents tailored to specific domains, workflows, or business needs, enabling tasks like research & analysis, browser automation, file & document management, data processing & analysis, and system administration.

azure-ai-docs
Azure AI Docs is a repository that provides detailed documentation and resources for developers looking to leverage Microsoft's AI services on the Azure platform. The repository covers a wide range of topics including machine learning, natural language processing, computer vision, and more. Developers can find tutorials, code samples, best practices, and guidelines to help them integrate AI capabilities into their applications seamlessly.

Hexabot
Hexabot Community Edition is an open-source chatbot solution designed for flexibility and customization, offering powerful text-to-action capabilities. It allows users to create and manage AI-powered, multi-channel, and multilingual chatbots with ease. The platform features an analytics dashboard, multi-channel support, visual editor, plugin system, NLP/NLU management, multi-lingual support, CMS integration, user roles & permissions, contextual data, subscribers & labels, and inbox & handover functionalities. The directory structure includes frontend, API, widget, NLU, and docker components. Prerequisites for running Hexabot include Docker and Node.js. The installation process involves cloning the repository, setting up the environment, and running the application. Users can access the UI admin panel and live chat widget for interaction. Various commands are available for managing the Docker services. Detailed documentation and contribution guidelines are provided for users interested in contributing to the project.

open-ai
Open AI is a powerful tool for artificial intelligence research and development. It provides a wide range of machine learning models and algorithms, making it easier for developers to create innovative AI applications. With Open AI, users can explore cutting-edge technologies such as natural language processing, computer vision, and reinforcement learning. The platform offers a user-friendly interface and comprehensive documentation to support users in building and deploying AI solutions. Whether you are a beginner or an experienced AI practitioner, Open AI offers the tools and resources you need to accelerate your AI projects and stay ahead in the rapidly evolving field of artificial intelligence.
For similar tasks

agentcloud
AgentCloud is an open-source platform that enables companies to build and deploy private LLM chat apps, empowering teams to securely interact with their data. It comprises three main components: Agent Backend, Webapp, and Vector Proxy. To run this project locally, clone the repository, install Docker, and start the services. The project is licensed under the GNU Affero General Public License, version 3 only. Contributions and feedback are welcome from the community.

zep-python
Zep is an open-source platform for building and deploying large language model (LLM) applications. It provides a suite of tools and services that make it easy to integrate LLMs into your applications, including chat history memory, embedding, vector search, and data enrichment. Zep is designed to be scalable, reliable, and easy to use, making it a great choice for developers who want to build LLM-powered applications quickly and easily.

lollms
LoLLMs Server is a text generation server based on large language models. It provides a Flask-based API for generating text using various pre-trained language models. This server is designed to be easy to install and use, allowing developers to integrate powerful text generation capabilities into their applications.

LlamaIndexTS
LlamaIndex.TS is a data framework for your LLM application. Use your own data with large language models (LLMs, OpenAI ChatGPT and others) in Typescript and Javascript.

semantic-kernel
Semantic Kernel is an SDK that integrates Large Language Models (LLMs) like OpenAI, Azure OpenAI, and Hugging Face with conventional programming languages like C#, Python, and Java. Semantic Kernel achieves this by allowing you to define plugins that can be chained together in just a few lines of code. What makes Semantic Kernel _special_ , however, is its ability to _automatically_ orchestrate plugins with AI. With Semantic Kernel planners, you can ask an LLM to generate a plan that achieves a user's unique goal. Afterwards, Semantic Kernel will execute the plan for the user.

botpress
Botpress is a platform for building next-generation chatbots and assistants powered by OpenAI. It provides a range of tools and integrations to help developers quickly and easily create and deploy chatbots for various use cases.

BotSharp
BotSharp is an open-source machine learning framework for building AI bot platforms. It provides a comprehensive set of tools and components for developing and deploying intelligent virtual assistants. BotSharp is designed to be modular and extensible, allowing developers to easily integrate it with their existing systems and applications. With BotSharp, you can quickly and easily create AI-powered chatbots, virtual assistants, and other conversational AI applications.

qdrant
Qdrant is a vector similarity search engine and vector database. It is written in Rust, which makes it fast and reliable even under high load. Qdrant can be used for a variety of applications, including: * Semantic search * Image search * Product recommendations * Chatbots * Anomaly detection Qdrant offers a variety of features, including: * Payload storage and filtering * Hybrid search with sparse vectors * Vector quantization and on-disk storage * Distributed deployment * Highlighted features such as query planning, payload indexes, SIMD hardware acceleration, async I/O, and write-ahead logging Qdrant is available as a fully managed cloud service or as an open-source software that can be deployed on-premises.
For similar jobs

sweep
Sweep is an AI junior developer that turns bugs and feature requests into code changes. It automatically handles developer experience improvements like adding type hints and improving test coverage.

teams-ai
The Teams AI Library is a software development kit (SDK) that helps developers create bots that can interact with Teams and Microsoft 365 applications. It is built on top of the Bot Framework SDK and simplifies the process of developing bots that interact with Teams' artificial intelligence capabilities. The SDK is available for JavaScript/TypeScript, .NET, and Python.

ai-guide
This guide is dedicated to Large Language Models (LLMs) that you can run on your home computer. It assumes your PC is a lower-end, non-gaming setup.

classifai
Supercharge WordPress Content Workflows and Engagement with Artificial Intelligence. Tap into leading cloud-based services like OpenAI, Microsoft Azure AI, Google Gemini and IBM Watson to augment your WordPress-powered websites. Publish content faster while improving SEO performance and increasing audience engagement. ClassifAI integrates Artificial Intelligence and Machine Learning technologies to lighten your workload and eliminate tedious tasks, giving you more time to create original content that matters.

chatbot-ui
Chatbot UI is an open-source AI chat app that allows users to create and deploy their own AI chatbots. It is easy to use and can be customized to fit any need. Chatbot UI is perfect for businesses, developers, and anyone who wants to create a chatbot.

BricksLLM
BricksLLM is a cloud native AI gateway written in Go. Currently, it provides native support for OpenAI, Anthropic, Azure OpenAI and vLLM. BricksLLM aims to provide enterprise level infrastructure that can power any LLM production use cases. Here are some use cases for BricksLLM: * Set LLM usage limits for users on different pricing tiers * Track LLM usage on a per user and per organization basis * Block or redact requests containing PIIs * Improve LLM reliability with failovers, retries and caching * Distribute API keys with rate limits and cost limits for internal development/production use cases * Distribute API keys with rate limits and cost limits for students

uAgents
uAgents is a Python library developed by Fetch.ai that allows for the creation of autonomous AI agents. These agents can perform various tasks on a schedule or take action on various events. uAgents are easy to create and manage, and they are connected to a fast-growing network of other uAgents. They are also secure, with cryptographically secured messages and wallets.

griptape
Griptape is a modular Python framework for building AI-powered applications that securely connect to your enterprise data and APIs. It offers developers the ability to maintain control and flexibility at every step. Griptape's core components include Structures (Agents, Pipelines, and Workflows), Tasks, Tools, Memory (Conversation Memory, Task Memory, and Meta Memory), Drivers (Prompt and Embedding Drivers, Vector Store Drivers, Image Generation Drivers, Image Query Drivers, SQL Drivers, Web Scraper Drivers, and Conversation Memory Drivers), Engines (Query Engines, Extraction Engines, Summary Engines, Image Generation Engines, and Image Query Engines), and additional components (Rulesets, Loaders, Artifacts, Chunkers, and Tokenizers). Griptape enables developers to create AI-powered applications with ease and efficiency.