
AceCoder
The official repo for "AceCoder: Acing Coder RL via Automated Test-Case Synthesis"
Stars: 74

AceCoder is a tool that introduces a fully automated pipeline for synthesizing large-scale reliable tests used for reward model training and reinforcement learning in the coding scenario. It curates datasets, trains reward models, and performs RL training to improve coding abilities of language models. The tool aims to unlock the potential of RL training for code generation models and push the boundaries of LLM's coding abilities.
README:
Authors: Huaye Zeng, Dongfu Jiang, HaoZhe Wang, Ping Nie, Xiaotong Chen, Wenhu Chen @ TIGER-Lab Â
- [2025/2/3] We release the AceCoder Paper, along with the 🤗 Models and Datasets on Hugging Face.
Abstract
-
We introduce AceCoder, the first work to propose a fully automated pipeline for synthesizing large-scale reliable tests used for the reward model training and reinforcement learning in the coding scenario. To do this, we curated the dataset AceCode-87K, where we start from a seed code dataset and prompt powerful LLMs to "imagine" proper test cases for the coding question and filter the noisy ones.
-
We trained two reward model AceCodeRM-7B and AceCodeRM-32B on the constructed preference pairs. Best-of-N sampling results on HumanEval(+), MBPP(+), BigCodeBench, LiveCodeBench (V4) show consistent improvement.
-
We perform RL training from three policy models: Qwen2.5-7B-Instruct and Qwen2.5-Coder-7B-Base and Qwen2.5-Coder-7B-Instruct. Two types of reward can be used, i.e. the trained reward model RM-7B and the rule-based reward, i.e. binary pass rate over the test cases in dataset. Additionaly, we also experiment with RL from the base model like DeepSeek-R1. Results show that directly RL from the Base Qwen2.5-Coder model can get 25% improvement on HumanEval-plus and 6% on MBPP-plus within just 80 optimization steps.
-
To our knowledge, this is the first work to propose a fully automated pipeline for synthesizing large-scale reliable tests used for the reward model training and reinforcement learning in the coding scenario. We believe our \dataset{} will unlock the potential of RL training for code generation models and help the community to further push the boundaries of LLM's coding abilities.
- AceCode-87K: The first large-scale coding dataset with an average of 16 test cases per prompt, synthesized by GPT-4o-mini
- AceCodePair-300K: Constructed preference pairs from AceCode-87K for training reward model.
- AceCode-87K-hard: where you can create sample 25% of the hard examples following commands here
- AceCodeRM-7B: A reward model trained on AceCodePair-300K from Qwen2.5-Coder-7B-Instruct
- AceCodeRM-32B: A reward model trained on AceCodePair-300K from Qwen2.5-Coder-32B-Instruct
Initial Policy Model | Reward Type | Training dataset | Final RL Model |
---|---|---|---|
Qwen2.5-7B-Instruct | AceCodeRM-7B | AceCode-87K-hard (22k) | TIGER-Lab/AceCoder-Qwen2.5-7B-Ins-RM |
Qwen2.5-7B-Instruct | Rule | AceCode-87K-hard (22k) | TIGER-Lab/AceCoder-Qwen2.5-7B-Ins-Rule |
Qwen2.5-Coder-7B-Instruct | AceCodeRM-7B | AceCode-87K-hard (22k) | TIGER-Lab/AceCoder-Qwen2.5-Coder-7B-Ins-RM |
Qwen2.5-Coder-7B-Instruct | Rule | AceCode-87K-hard (22k) | TIGER-Lab/AceCoder-Qwen2.5-Coder-7B-Ins-Rule |
Qwen2.5-Coder-7B | AceCodeRM-7B | AceCode-87K-hard (22k) | TIGER-Lab/AceCoder-Qwen2.5-Coder-7B-Base-RM |
Qwen2.5-Coder-7B | Rule | AceCode-87K-hard (22k) | TIGER-Lab/AceCoder-Qwen2.5-Coder-7B-Base-Rule |
See our website or paper for detailed performance report.
git submodule init
git submodule update
First install acecoder as a package:
pip install https://github.com/TIGER-AI-Lab/AceCoder.git
Then see examples/run_acecoderm.py for how to use AceCoderRM. Quick command python examples/run_acecoderm.py
will run the example.
See train/train_rm/README.md for detailed instructions.
See train/train_rl/README.md for detailed instructions.
We use Evalplus, bigcodebench, LiveCodeBench for evaluation of HumanEval(+), MBPP(+), BigCodeBench, LiveCodeBench (V4) respectively.
If you find this work helpful, please consider citing:
@article{AceCoder,
title={AceCoder: Acing Coder RL via Automated Test-Case Synthesis},
author={Zeng, Huaye and Jiang, Dongfu and Wang, Haozhe and Nie, Ping and Chen, Xiaotong and Chen, Wenhu},
journal={ArXiv},
year={2025},
volume={2502.01718}
}
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for AceCoder
Similar Open Source Tools

AceCoder
AceCoder is a tool that introduces a fully automated pipeline for synthesizing large-scale reliable tests used for reward model training and reinforcement learning in the coding scenario. It curates datasets, trains reward models, and performs RL training to improve coding abilities of language models. The tool aims to unlock the potential of RL training for code generation models and push the boundaries of LLM's coding abilities.

VILA
VILA is a family of open Vision Language Models optimized for efficient video understanding and multi-image understanding. It includes models like NVILA, LongVILA, VILA-M3, VILA-U, and VILA-1.5, each offering specific features and capabilities. The project focuses on efficiency, accuracy, and performance in various tasks related to video, image, and language understanding and generation. VILA models are designed to be deployable on diverse NVIDIA GPUs and support long-context video understanding, medical applications, and multi-modal design.

CuMo
CuMo is a project focused on scaling multimodal Large Language Models (LLMs) with Co-Upcycled Mixture-of-Experts. It introduces CuMo, which incorporates Co-upcycled Top-K sparsely-gated Mixture-of-experts blocks into the vision encoder and the MLP connector, enhancing the capabilities of multimodal LLMs. The project adopts a three-stage training approach with auxiliary losses to stabilize the training process and maintain a balanced loading of experts. CuMo achieves comparable performance to other state-of-the-art multimodal LLMs on various Visual Question Answering (VQA) and visual-instruction-following benchmarks.

chronos-forecasting
Chronos is a family of pretrained time series forecasting models based on language model architectures. A time series is transformed into a sequence of tokens via scaling and quantization, and a language model is trained on these tokens using the cross-entropy loss. Once trained, probabilistic forecasts are obtained by sampling multiple future trajectories given the historical context. Chronos models have been trained on a large corpus of publicly available time series data, as well as synthetic data generated using Gaussian processes.

EmbodiedScan
EmbodiedScan is a holistic multi-modal 3D perception suite designed for embodied AI. It introduces a multi-modal, ego-centric 3D perception dataset and benchmark for holistic 3D scene understanding. The dataset includes over 5k scans with 1M ego-centric RGB-D views, 1M language prompts, 160k 3D-oriented boxes spanning 760 categories, and dense semantic occupancy with 80 common categories. The suite includes a baseline framework named Embodied Perceptron, capable of processing multi-modal inputs for 3D perception tasks and language-grounded tasks.

Awesome-Attention-Heads
Awesome-Attention-Heads is a platform providing the latest research on Attention Heads, focusing on enhancing understanding of Transformer structure for model interpretability. It explores attention mechanisms for behavior, inference, and analysis, alongside feed-forward networks for knowledge storage. The repository aims to support researchers studying LLM interpretability and hallucination by offering cutting-edge information on Attention Head Mining.

Awesome-LLM-Quantization
Awesome-LLM-Quantization is a curated list of resources related to quantization techniques for Large Language Models (LLMs). Quantization is a crucial step in deploying LLMs on resource-constrained devices, such as mobile phones or edge devices, by reducing the model's size and computational requirements.

crab
CRAB is a framework for building LLM agent benchmark environments in a Python-centric way. It is cross-platform and multi-environment, allowing the creation of agent environments supporting various deployment options. The framework offers easy-to-use configuration with the ability to add new actions and define environments seamlessly. CRAB also provides a novel benchmarking suite with tasks and evaluators defined in Python, along with a unique graph evaluator method for detailed metrics.

AIGC_text_detector
AIGC_text_detector is a repository containing the official codes for the paper 'Multiscale Positive-Unlabeled Detection of AI-Generated Texts'. It includes detector models for both English and Chinese texts, along with stronger detectors developed with enhanced training strategies. The repository provides links to download the detector models, datasets, and necessary preprocessing tools. Users can train RoBERTa and BERT models on the HC3-English dataset using the provided scripts.

twelvet
Twelvet is a permission management system based on Spring Cloud Alibaba that serves as a framework for rapid development. It is a scaffolding framework based on microservices architecture, aiming to reduce duplication of business code and provide a common core business code for both microservices and monoliths. It is designed for learning microservices concepts and development, suitable for website management, CMS, CRM, OA, and other system development. The system is intended to quickly meet business needs, improve user experience, and save time by incubating practical functional points in lightweight, highly portable functional plugins.

SEED-Bench
SEED-Bench is a comprehensive benchmark for evaluating the performance of multimodal large language models (LLMs) on a wide range of tasks that require both text and image understanding. It consists of two versions: SEED-Bench-1 and SEED-Bench-2. SEED-Bench-1 focuses on evaluating the spatial and temporal understanding of LLMs, while SEED-Bench-2 extends the evaluation to include text and image generation tasks. Both versions of SEED-Bench provide a diverse set of tasks that cover different aspects of multimodal understanding, making it a valuable tool for researchers and practitioners working on LLMs.

FATE-LLM
FATE-LLM is a framework supporting federated learning for large and small language models. It promotes training efficiency of federated LLMs using Parameter-Efficient methods, protects the IP of LLMs using FedIPR, and ensures data privacy during training and inference through privacy-preserving mechanisms.

NeMo-Curator
NeMo Curator is a GPU-accelerated open-source framework designed for efficient large language model data curation. It provides scalable dataset preparation for tasks like foundation model pretraining, domain-adaptive pretraining, supervised fine-tuning, and parameter-efficient fine-tuning. The library leverages GPUs with Dask and RAPIDS to accelerate data curation, offering customizable and modular interfaces for pipeline expansion and model convergence. Key features include data download, text extraction, quality filtering, deduplication, downstream-task decontamination, distributed data classification, and PII redaction. NeMo Curator is suitable for curating high-quality datasets for large language model training.

MiniAI-Face-Recognition-LivenessDetection-AndroidSDK
MiniAiLive provides system integrators with fast, flexible and extremely precise facial recognition with 3D passive face liveness detection (face anti-spoofing) that can be deployed across a number of scenarios, including security, access control, public safety, fintech, smart retail and home protection.
For similar tasks

AceCoder
AceCoder is a tool that introduces a fully automated pipeline for synthesizing large-scale reliable tests used for reward model training and reinforcement learning in the coding scenario. It curates datasets, trains reward models, and performs RL training to improve coding abilities of language models. The tool aims to unlock the potential of RL training for code generation models and push the boundaries of LLM's coding abilities.

RLHF-Reward-Modeling
This repository contains code for training reward models for Deep Reinforcement Learning-based Reward-modulated Hierarchical Fine-tuning (DRL-based RLHF), Iterative Selection Fine-tuning (Rejection sampling fine-tuning), and iterative Decision Policy Optimization (DPO). The reward models are trained using a Bradley-Terry model based on the Gemma and Mistral language models. The resulting reward models achieve state-of-the-art performance on the RewardBench leaderboard for reward models with base models of up to 13B parameters.

RLHF-Reward-Modeling
This repository, RLHF-Reward-Modeling, is dedicated to training reward models for DRL-based RLHF (PPO), Iterative SFT, and iterative DPO. It provides state-of-the-art performance in reward models with a base model size of up to 13B. The installation instructions involve setting up the environment and aligning the handbook. Dataset preparation requires preprocessing conversations into a standard format. The code can be run with Gemma-2b-it, and evaluation results can be obtained using provided datasets. The to-do list includes various reward models like Bradley-Terry, preference model, regression-based reward model, and multi-objective reward model. The repository is part of iterative rejection sampling fine-tuning and iterative DPO.
For similar jobs

weave
Weave is a toolkit for developing Generative AI applications, built by Weights & Biases. With Weave, you can log and debug language model inputs, outputs, and traces; build rigorous, apples-to-apples evaluations for language model use cases; and organize all the information generated across the LLM workflow, from experimentation to evaluations to production. Weave aims to bring rigor, best-practices, and composability to the inherently experimental process of developing Generative AI software, without introducing cognitive overhead.

LLMStack
LLMStack is a no-code platform for building generative AI agents, workflows, and chatbots. It allows users to connect their own data, internal tools, and GPT-powered models without any coding experience. LLMStack can be deployed to the cloud or on-premise and can be accessed via HTTP API or triggered from Slack or Discord.

VisionCraft
The VisionCraft API is a free API for using over 100 different AI models. From images to sound.

kaito
Kaito is an operator that automates the AI/ML inference model deployment in a Kubernetes cluster. It manages large model files using container images, avoids tuning deployment parameters to fit GPU hardware by providing preset configurations, auto-provisions GPU nodes based on model requirements, and hosts large model images in the public Microsoft Container Registry (MCR) if the license allows. Using Kaito, the workflow of onboarding large AI inference models in Kubernetes is largely simplified.

PyRIT
PyRIT is an open access automation framework designed to empower security professionals and ML engineers to red team foundation models and their applications. It automates AI Red Teaming tasks to allow operators to focus on more complicated and time-consuming tasks and can also identify security harms such as misuse (e.g., malware generation, jailbreaking), and privacy harms (e.g., identity theft). The goal is to allow researchers to have a baseline of how well their model and entire inference pipeline is doing against different harm categories and to be able to compare that baseline to future iterations of their model. This allows them to have empirical data on how well their model is doing today, and detect any degradation of performance based on future improvements.

tabby
Tabby is a self-hosted AI coding assistant, offering an open-source and on-premises alternative to GitHub Copilot. It boasts several key features: * Self-contained, with no need for a DBMS or cloud service. * OpenAPI interface, easy to integrate with existing infrastructure (e.g Cloud IDE). * Supports consumer-grade GPUs.

spear
SPEAR (Simulator for Photorealistic Embodied AI Research) is a powerful tool for training embodied agents. It features 300 unique virtual indoor environments with 2,566 unique rooms and 17,234 unique objects that can be manipulated individually. Each environment is designed by a professional artist and features detailed geometry, photorealistic materials, and a unique floor plan and object layout. SPEAR is implemented as Unreal Engine assets and provides an OpenAI Gym interface for interacting with the environments via Python.

Magick
Magick is a groundbreaking visual AIDE (Artificial Intelligence Development Environment) for no-code data pipelines and multimodal agents. Magick can connect to other services and comes with nodes and templates well-suited for intelligent agents, chatbots, complex reasoning systems and realistic characters.