Nucleoid
Neuro-Symbolic AI with Knowledge Graph | "True Reasoning" through data and logic 🌿🌱🐋🌍
Stars: 562
Nucleoid is a declarative (logic) runtime environment that manages both data and logic under the same runtime. It uses a declarative programming paradigm, which allows developers to focus on the business logic of the application, while the runtime manages the technical details. This allows for faster development and reduces the amount of code that needs to be written. Additionally, the sharding feature can help to distribute the load across multiple instances, which can further improve the performance of the system.
README:
Neuro-Symbolic AI with Knowledge Graph
Reasoning Engine
Declarative (Logic) Runtime Environment: Extensible Data and Logic Representation
Nucleoid is a declarative, logic-based, contextual runtime for Neuro-Symbolic AI. Nucleoid runtime tracks each statement in IPL-inspired declarative syntax and dynamically creates relationships between both logic and data statements in the knowledge graph to used in decision-making and problem-solving process.
- Adaptive Reasoning: Combines symbolic logic with contextual information to analyze relationships, draw conclusions and incorporating new information and adjusting its conclusions accordingly.
- Logic Graph: Specialized knowledge graph that captures relationships between both logic and data statements based on formal logic, facilitating complex deductions and adapting to new information.
- Explainability: The Logic Graph provides a transparent representation of the reasoning process, making it easier to understand how decisions are reached and potential biases are identified.
Echoing to the idea of "thinking, fast and slow", AI system should provide fast, “intuitive” ideas, and the other, more deliberate, rational decision-making. D(L)RE enables both intuitive decisions based on contextual information and deliberate, well-reasoned decisions based on logical deductions.
Chat for Logical Context
https://nucleoid.ai/chat
In Nucleoid's paradigm, there is no segregation between logic and data; instead, the paradigm approaches how both logic and data statements are related to each other. As the runtime receives new statements, it updates the knowledge graph and reevaluates both logic and data statements to reflect the new information. This adaptive process enables the system to respond to new situations and make deterministic selections as a result of plasticity.
Multi-Lang Support | ||
---|---|---|
The declarative structure in the runtime makes it possible to provide multiple language support through JIT compiler. |
Welcome! I’ve been expecting you—"Skynet was gone. And now one road has become many." 🌐
The future is building up! Neuro-Symbolic AI is now an emerging field within AI communities and marks a crucial milestone on the journey to AGI. Unfortunately, existing symbolic AI and knowledge graphs lack advancement in today's AI landscape. Nucleoid is revolutionizing knowledge graphs with declarative, logic-based, contextual runtime, which can be integrated with ANNs to lay a robust foundation for the next leap forward. We use a Node.js-based runtime, simply because JavaScript is the language of the internet so that every piece of code is inherently dynamic, making it an ideal candidate. Sadly, Python's interpreter structure makes its dynamic eval function extremely slow, but in good side, the future looks bright as it will harness the strengths of both languages, much like the fusion of neuro and symbolic AI leverages their respective strengths!
Can Mingir
|
Neuro-Symbolic AI is an approach that integrates the strengths of both neural networks and symbolic AI to create systems that can learn from data and also reason logically. By combining these two components, Neuro-Symbolic AI aims to leverage the intuitive, pattern-recognition capabilities of neural networks along with the logical, rule-based reasoning of symbolic AI. This integration offers a more holistic AI system that is both adaptable and able to explain its decisions, making it suitable for complex decision-making tasks where both learning from data and logical reasoning are required. Here’s how it breaks down:
Neural networks in Neuro-Symbolic AI are adept at learning patterns, relationships, and features from large datasets. These networks excel in tasks that involve classification, prediction, and pattern recognition, making them invaluable for processing unstructured data, such as images, text, and audio. Neural networks, through their learning capabilities, can generalize from examples to understand complex data structures and nuances in the data.
The symbolic component of Neuro-Symbolic AI focuses on logic, rules, and symbolic representations of knowledge. Unlike neural networks that learn from data, symbolic AI uses predefined rules and knowledge bases to perform reasoning, make inferences, and understand relationships between entities. This aspect of AI is transparent, interpretable, and capable of explaining its decisions and reasoning processes in a way that humans can understand.
Declarative Language in Neuro-Symbolic AI acts as the ubiquitous language for specifying the desired outcomes of a program without detailing the procedural methods to achieve these outcomes. This type of language is essential for articulating logical rules, constraints, and relationships that underpin symbolic reasoning within these systems. It supports the formulation of structured knowledge bases and facilitates logical reasoning tasks, enabling systems to deduce, infer, and respond to queries based on established rules. Moreover, declarative languages are instrumental in integrating the outputs of neural networks into symbolic reasoning frameworks, marrying data-driven learning with rule-based logic. Their widespread use enhances the transparency, explainability, and modularity of AI systems, while also boosting their efficiency in domains heavily reliant on rule-based operations.
Declarative logic is a subset of declarative programming, a style of building programs that expresses the logic of a computation without describing its control flow. In declarative logic, you state the facts and rules that define the problem domain. The runtime environment or the system itself figures out how to satisfy those conditions or how to apply those rules to reach a conclusion. This contrasts with imperative programming, where the developer writes code that describes the exact steps to achieve a goal.
Symbolic reasoning refers to the process of using symbols to represent problems and applying logical rules to manipulate these symbols and derive conclusions or solutions. In AI and computer science, it involves using symbolic representations for entities and actions, enabling the system to perform logical inferences, decision making, and problem-solving based on the rules and knowledge encoded in the symbols.
By integrating Nucleoid into Neuro-Symbolic AI, the system benefits from enhanced interpretability and reliability. The declarative logic and rules defined in Nucleoid provide clear explanations for the AI's decisions, making it easier for users to understand and trust the system's outputs. Furthermore, the explicit reasoning capabilities help ensure that decisions are made based on logical principles, adding a layer of reliability and consistency to the AI's behavior.
In the realm of Neuro-Symbolic AI, Plasticity is an important element for the system's ability to modify and optimize its connections in response to new information. This concept is inspired by neuroplasticity in biological brains, where neurons can strengthen or weaken their connections based on activity, enabling learning and memory.
- Dynamic Knowledge Base: Neuro-Symbolic AI systems dynamically update their knowledge base as they encounter new scenarios or corrections to their previous knowledge. This continuous updating process allows the systems to remain relevant and accurate over time.
- Adaptive Logic and Reasoning: The AI system can modify its symbolic rules and reasoning strategies to better match observed data or outcomes, enhancing its decision-making and problem-solving abilities.
- Generalization and Specialization: Through plasticity, the system can generalize from learned experiences to new, unseen scenarios or specialize in certain domains by fine-tuning its parameters or rules based on specific data inputs.
The idea of plasticity in AI, especially in logic-based systems like those in Neuro-Symbolic AI, enhances the capability of machines to not only perform tasks based on fixed rules but also to evolve those rules and adapt their reasoning over time, much like the cognitive flexibility of living things.
User:
> 'Define human with name'
Assistant:
> 'The user requested to define a human with a name using a declarative class'
---
// Ubiquitous Code:
'use declarative';
class Human {
name: string;
constructor(name: string) {
this.name = name;
}
}
User:
> 'All humans are mortal'
Assistant: All humans are mortal
> 'All humans were declared as mortal.'
---
// Ubiquitous Code:
'use declarative';
$Human.mortal = true;
User:
> 'Create a human with name "Socrates"'
Assistant:
> 'A human named 'Socrates' was successfully created.'
---
// Ubiquitous Code:
'use imperative';
var human1 = new Human('Socrates');
// Result: {"id":"human1","name":"Socrates","mortal":true}
User:
> 'Is human with name 'Socrates' mortal?'
Assistant:
> 'The human named 'Socrates' was determined to be mortal.'
---
// Ubiquitous Code:
`use imperative`;
var human1 = new Human('Socrates');
human1.mortal;
// Result: true
Learn more at nucleoid.com/docs/get-started
💡 Nucleoid runtime can also run on local machine with
npx @nucleoidai/ide start
andnpx @nucleoidai/expert start
including Nucleoid Chat. These commands enable IDE and expert system components needed for Neuro-Symbolic AI.
Nucleoid is an implementation of symbolic AI for declarative (logic) programming at the runtime. As mentioned, the declarative runtime environment manages JavaScript state and stores each transaction in the built-in data store by declaratively rerendering JavaScript statements and building the knowledge graph (base) as well as an execution plan.
The declarative runtime isolates a behavior definition of a program from its technical instructions and executes declarative statements, which represent logical intention without carrying any technical detail. In this paradigm, there is no segregation regarding what data is or not, instead approaches how data (declarative statement) is related with others so that any type of data including business rules can be added without requiring any additional actions such as compiling, configuring, restarting as a result of plasticity. This approach also opens possibilities of storing data in the same box with the programming runtime.
In short, the main objective of the project is to manage both of data and logic under the same runtime. The declarative programming paradigm used by Nucleoid allows developers to focus on the business logic of the application, while the runtime manages the technical details.This allows for faster development and reduces the amount of code that needs to be written. Additionally, the sharding feature can help to distribute the load across multiple instances, which can further improve the performance of the system.
This is the comparation our sample order app in Nucleoid IDE against MySQL and Postgres with using Express.js and Sequelize libraries.
https://nucleoid.com/ide/sample
Performance benchmark happened in t2.micro of AWS EC2 instance and both databases had dedicated servers with no indexes and default configurations.
https://github.com/NucleoidAI/benchmark
This does not necessary mean Nucleoid runtime is faster than MySQL or Postgres, instead databases require constant maintenance by DBA teams with indexing, caching, purging etc. however, Nucleoid tries to solve this problem with managing logic and data internally. As seen in the chart, for applications with average complexity, Nucleoid's performance is close to linear because of on-chain data store, in-memory computing model as well as limiting the IO process.
Track at Trello
- [x] Beta is out
- [x] ES6 support
- [ ] ES2018 support
- [ ] ES2020 support
- [ ] TypeScript
- [ ] IDE (WiP)
- [ ] Production-ready
Please report an issue or ask a question at Discussions
Learn more at nucleoid.com
⭐️ Star us on GitHub for the support
Neuro-Symbolic AI is an emerging field and thanks to declarative logic programming, we have a brand-new approach to Neuro-Symbolic AI. Join us in shaping the future of AI!
NucBot |
canmingir |
322332 |
dependabot[bot] |
francisco-giancarelli-crombie |
Gulshanaggarwal |
CanPacis |
durulkoca |
halilcengel |
EnesKeremAYDIN |
russle-smith |
russellgray |
Generated by NucBot
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for Nucleoid
Similar Open Source Tools
Nucleoid
Nucleoid is a declarative (logic) runtime environment that manages both data and logic under the same runtime. It uses a declarative programming paradigm, which allows developers to focus on the business logic of the application, while the runtime manages the technical details. This allows for faster development and reduces the amount of code that needs to be written. Additionally, the sharding feature can help to distribute the load across multiple instances, which can further improve the performance of the system.
db-ally
db-ally is a library for creating natural language interfaces to data sources. It allows developers to outline specific use cases for a large language model (LLM) to handle, detailing the desired data format and the possible operations to fetch this data. db-ally effectively shields the complexity of the underlying data source from the model, presenting only the essential information needed for solving the specific use cases. Instead of generating arbitrary SQL, the model is asked to generate responses in a simplified query language.
Graph-CoT
This repository contains the source code and datasets for Graph Chain-of-Thought: Augmenting Large Language Models by Reasoning on Graphs accepted to ACL 2024. It proposes a framework called Graph Chain-of-thought (Graph-CoT) to enable Language Models to traverse graphs step-by-step for reasoning, interaction, and execution. The motivation is to alleviate hallucination issues in Language Models by augmenting them with structured knowledge sources represented as graphs.
llmops-promptflow-template
LLMOps with Prompt flow is a template and guidance for building LLM-infused apps using Prompt flow. It provides centralized code hosting, lifecycle management, variant and hyperparameter experimentation, A/B deployment, many-to-many dataset/flow relationships, multiple deployment targets, comprehensive reporting, BYOF capabilities, configuration-based development, local prompt experimentation and evaluation, endpoint testing, and optional Human-in-loop validation. The tool is customizable to suit various application needs.
chatgpt-universe
ChatGPT is a large language model that can generate human-like text, translate languages, write different kinds of creative content, and answer your questions in a conversational way. It is trained on a massive amount of text data, and it is able to understand and respond to a wide range of natural language prompts. Here are 5 jobs suitable for this tool, in lowercase letters: 1. content writer 2. chatbot assistant 3. language translator 4. creative writer 5. researcher
Me-LLaMA
Me LLaMA introduces a suite of open-source medical Large Language Models (LLMs), including Me LLaMA 13B/70B and their chat-enhanced versions. Developed through innovative continual pre-training and instruction tuning, these models leverage a vast medical corpus comprising PubMed papers, medical guidelines, and general domain data. Me LLaMA sets new benchmarks on medical reasoning tasks, making it a significant asset for medical NLP applications and research. The models are intended for computational linguistics and medical research, not for clinical decision-making without validation and regulatory approval.
ParrotServe
Parrot is a distributed serving system for LLM-based Applications, designed to efficiently serve LLM-based applications by adding Semantic Variable in the OpenAI-style API. It allows for horizontal scalability with multiple Engine instances running LLM models communicating with ServeCore. The system enables AI agents to interact with LLMs via natural language prompts for collaborative tasks.
AI4Animation
AI4Animation is a comprehensive framework for data-driven character animation, including data processing, neural network training, and runtime control, developed in Unity3D/PyTorch. It explores deep learning opportunities for character animation, covering biped and quadruped locomotion, character-scene interactions, sports and fighting games, and embodied avatar motions in AR/VR. The research focuses on generative frameworks, codebook matching, periodic autoencoders, animation layering, local motion phases, and neural state machines for character control and animation.
DevOpsGPT
DevOpsGPT is an AI-driven software development automation solution that combines Large Language Models (LLM) with DevOps tools to convert natural language requirements into working software. It improves development efficiency by eliminating the need for tedious requirement documentation, shortens development cycles, reduces communication costs, and ensures high-quality deliverables. The Enterprise Edition offers features like existing project analysis, professional model selection, and support for more DevOps platforms. The tool automates requirement development, generates interface documentation, provides pseudocode based on existing projects, facilitates code refinement, enables continuous integration, and supports software version release. Users can run DevOpsGPT with source code or Docker, and the tool comes with limitations in precise documentation generation and understanding existing project code. The product roadmap includes accurate requirement decomposition, rapid import of development requirements, and integration of more software engineering and professional tools for efficient software development tasks under AI planning and execution.
aligner
Aligner is a model-agnostic alignment tool designed to efficiently correct responses from large language models. It redistributes initial answers to align with human intentions, improving performance across various LLMs. The tool can be applied with minimal training, enhancing upstream models and reducing hallucination. Aligner's 'copy and correct' method preserves the base structure while enhancing responses. It achieves significant performance improvements in helpfulness, harmlessness, and honesty dimensions, with notable success in boosting Win Rates on evaluation leaderboards.
burn
Burn is a new comprehensive dynamic Deep Learning Framework built using Rust with extreme flexibility, compute efficiency and portability as its primary goals.
uncheatable_eval
Uncheatable Eval is a tool designed to assess the language modeling capabilities of LLMs on real-time, newly generated data from the internet. It aims to provide a reliable evaluation method that is immune to data leaks and cannot be gamed. The tool supports the evaluation of Hugging Face AutoModelForCausalLM models and RWKV models by calculating the sum of negative log probabilities on new texts from various sources such as recent papers on arXiv, new projects on GitHub, news articles, and more. Uncheatable Eval ensures that the evaluation data is not included in the training sets of publicly released models, thus offering a fair assessment of the models' performance.
aici
The Artificial Intelligence Controller Interface (AICI) lets you build Controllers that constrain and direct output of a Large Language Model (LLM) in real time. Controllers are flexible programs capable of implementing constrained decoding, dynamic editing of prompts and generated text, and coordinating execution across multiple, parallel generations. Controllers incorporate custom logic during the token-by-token decoding and maintain state during an LLM request. This allows diverse Controller strategies, from programmatic or query-based decoding to multi-agent conversations to execute efficiently in tight integration with the LLM itself.
awesome-RLAIF
Reinforcement Learning from AI Feedback (RLAIF) is a concept that describes a type of machine learning approach where **an AI agent learns by receiving feedback or guidance from another AI system**. This concept is closely related to the field of Reinforcement Learning (RL), which is a type of machine learning where an agent learns to make a sequence of decisions in an environment to maximize a cumulative reward. In traditional RL, an agent interacts with an environment and receives feedback in the form of rewards or penalties based on the actions it takes. It learns to improve its decision-making over time to achieve its goals. In the context of Reinforcement Learning from AI Feedback, the AI agent still aims to learn optimal behavior through interactions, but **the feedback comes from another AI system rather than from the environment or human evaluators**. This can be **particularly useful in situations where it may be challenging to define clear reward functions or when it is more efficient to use another AI system to provide guidance**. The feedback from the AI system can take various forms, such as: - **Demonstrations** : The AI system provides demonstrations of desired behavior, and the learning agent tries to imitate these demonstrations. - **Comparison Data** : The AI system ranks or compares different actions taken by the learning agent, helping it to understand which actions are better or worse. - **Reward Shaping** : The AI system provides additional reward signals to guide the learning agent's behavior, supplementing the rewards from the environment. This approach is often used in scenarios where the RL agent needs to learn from **limited human or expert feedback or when the reward signal from the environment is sparse or unclear**. It can also be used to **accelerate the learning process and make RL more sample-efficient**. Reinforcement Learning from AI Feedback is an area of ongoing research and has applications in various domains, including robotics, autonomous vehicles, and game playing, among others.
pydantic-ai
PydanticAI is a Python agent framework designed to make it less painful to build production grade applications with Generative AI. It is built by the Pydantic Team and supports various AI models like OpenAI, Anthropic, Gemini, Ollama, Groq, and Mistral. PydanticAI seamlessly integrates with Pydantic Logfire for real-time debugging, performance monitoring, and behavior tracking of LLM-powered applications. It is type-safe, Python-centric, and offers structured responses, dependency injection system, and streamed responses. PydanticAI is in early beta, offering a Python-centric design to apply standard Python best practices in AI-driven projects.
suql
SUQL (Structured and Unstructured Query Language) is a tool that augments SQL with free text primitives for building chatbots that can interact with relational data sources containing both structured and unstructured information. It seamlessly integrates retrieval models, large language models (LLMs), and traditional SQL to provide a clean interface for hybrid data access. SUQL supports optimizations to minimize expensive LLM calls, scalability to large databases with PostgreSQL, and general SQL operations like JOINs and GROUP BYs.
For similar tasks
Nucleoid
Nucleoid is a declarative (logic) runtime environment that manages both data and logic under the same runtime. It uses a declarative programming paradigm, which allows developers to focus on the business logic of the application, while the runtime manages the technical details. This allows for faster development and reduces the amount of code that needs to be written. Additionally, the sharding feature can help to distribute the load across multiple instances, which can further improve the performance of the system.
LLM_MultiAgents_Survey_Papers
This repository maintains a list of research papers on LLM-based Multi-Agents, categorized into five main streams: Multi-Agents Framework, Multi-Agents Orchestration and Efficiency, Multi-Agents for Problem Solving, Multi-Agents for World Simulation, and Multi-Agents Datasets and Benchmarks. The repository also includes a survey paper on LLM-based Multi-Agents and a table summarizing the key findings of the survey.
For similar jobs
Azure-Analytics-and-AI-Engagement
The Azure-Analytics-and-AI-Engagement repository provides packaged Industry Scenario DREAM Demos with ARM templates (Containing a demo web application, Power BI reports, Synapse resources, AML Notebooks etc.) that can be deployed in a customer’s subscription using the CAPE tool within a matter of few hours. Partners can also deploy DREAM Demos in their own subscriptions using DPoC.
skyvern
Skyvern automates browser-based workflows using LLMs and computer vision. It provides a simple API endpoint to fully automate manual workflows, replacing brittle or unreliable automation solutions. Traditional approaches to browser automations required writing custom scripts for websites, often relying on DOM parsing and XPath-based interactions which would break whenever the website layouts changed. Instead of only relying on code-defined XPath interactions, Skyvern adds computer vision and LLMs to the mix to parse items in the viewport in real-time, create a plan for interaction and interact with them. This approach gives us a few advantages: 1. Skyvern can operate on websites it’s never seen before, as it’s able to map visual elements to actions necessary to complete a workflow, without any customized code 2. Skyvern is resistant to website layout changes, as there are no pre-determined XPaths or other selectors our system is looking for while trying to navigate 3. Skyvern leverages LLMs to reason through interactions to ensure we can cover complex situations. Examples include: 1. If you wanted to get an auto insurance quote from Geico, the answer to a common question “Were you eligible to drive at 18?” could be inferred from the driver receiving their license at age 16 2. If you were doing competitor analysis, it’s understanding that an Arnold Palmer 22 oz can at 7/11 is almost definitely the same product as a 23 oz can at Gopuff (even though the sizes are slightly different, which could be a rounding error!) Want to see examples of Skyvern in action? Jump to #real-world-examples-of- skyvern
pandas-ai
PandasAI is a Python library that makes it easy to ask questions to your data in natural language. It helps you to explore, clean, and analyze your data using generative AI.
vanna
Vanna is an open-source Python framework for SQL generation and related functionality. It uses Retrieval-Augmented Generation (RAG) to train a model on your data, which can then be used to ask questions and get back SQL queries. Vanna is designed to be portable across different LLMs and vector databases, and it supports any SQL database. It is also secure and private, as your database contents are never sent to the LLM or the vector database.
databend
Databend is an open-source cloud data warehouse that serves as a cost-effective alternative to Snowflake. With its focus on fast query execution and data ingestion, it's designed for complex analysis of the world's largest datasets.
Avalonia-Assistant
Avalonia-Assistant is an open-source desktop intelligent assistant that aims to provide a user-friendly interactive experience based on the Avalonia UI framework and the integration of Semantic Kernel with OpenAI or other large LLM models. By utilizing Avalonia-Assistant, you can perform various desktop operations through text or voice commands, enhancing your productivity and daily office experience.
marvin
Marvin is a lightweight AI toolkit for building natural language interfaces that are reliable, scalable, and easy to trust. Each of Marvin's tools is simple and self-documenting, using AI to solve common but complex challenges like entity extraction, classification, and generating synthetic data. Each tool is independent and incrementally adoptable, so you can use them on their own or in combination with any other library. Marvin is also multi-modal, supporting both image and audio generation as well using images as inputs for extraction and classification. Marvin is for developers who care more about _using_ AI than _building_ AI, and we are focused on creating an exceptional developer experience. Marvin users should feel empowered to bring tightly-scoped "AI magic" into any traditional software project with just a few extra lines of code. Marvin aims to merge the best practices for building dependable, observable software with the best practices for building with generative AI into a single, easy-to-use library. It's a serious tool, but we hope you have fun with it. Marvin is open-source, free to use, and made with 💙 by the team at Prefect.
activepieces
Activepieces is an open source replacement for Zapier, designed to be extensible through a type-safe pieces framework written in Typescript. It features a user-friendly Workflow Builder with support for Branches, Loops, and Drag and Drop. Activepieces integrates with Google Sheets, OpenAI, Discord, and RSS, along with 80+ other integrations. The list of supported integrations continues to grow rapidly, thanks to valuable contributions from the community. Activepieces is an open ecosystem; all piece source code is available in the repository, and they are versioned and published directly to npmjs.com upon contributions. If you cannot find a specific piece on the pieces roadmap, please submit a request by visiting the following link: Request Piece Alternatively, if you are a developer, you can quickly build your own piece using our TypeScript framework. For guidance, please refer to the following guide: Contributor's Guide