materialize
The live data layer for apps and AI agents Create up-to-the-second views into your business, just using SQL
Stars: 6227
Materialize is a real-time data integration platform that creates and continually updates consistent views of transactional data from across your organization. Its SQL interface democratizes the ability to serve and access live data. Materialize can be deployed anywhere your infrastructure runs. Use Materialize to deliver fresh context for AI/RAG pipelines, power operational dashboards, and create more dynamic customer experiences without building time-consuming custom data pipelines. Materialize focuses on providing correct and consistent answers with minimal latency, and does not ask you to accept either approximate answers or eventual consistency. Materialize answers a query with the correct result on a specific version of your data. Materialize recasts SQL queries as dataflows, which can react efficiently to changes in your data as they happen. Materialize supports a large fraction of PostgreSQL features and is actively expanding support for more built-in PostgreSQL functions. Materialize can read data directly from PostgreSQL or MySQL replication stream, from Kafka, or from SaaS applications via webhooks. Once data is in, define views and perform reads via the PostgreSQL protocol. Materialize supports a comprehensive variety of SQL features, all using the PostgreSQL dialect and protocol. Materialize can incrementally maintain views in the presence of arbitrary inserts, updates, and deletes. Materialize supports recursion that enables incrementally updating tree and graph structures. Materialize is primarily written in Rust.
README:
Materialize is a real-time data integration platform that creates and continually updates consistent views of transactional data from across your organization. Its SQL interface democratizes the ability to serve and access live data. Materialize can be deployed anywhere your infrastructure runs.
Use Materialize to do things like deliver fresh context for AI/RAG pipelines, power operational dashboards, and create more dynamic customer experiences without building time-consuming custom data pipelines.
The three most common patterns for adopting Materialize are the following:
- Query Offload (CQRS) - Scale complex read queries more efficiently than a read replica, and without the headaches of cache invalidation.
- Integration Hub (ODS) - Extract, load, and incrementally transform data from multiple sources. Create live views of your data that can be queried directly or pushed downstream.
- Operational Data Mesh (ODM) - Use SQL to create and deliver real-time, strongly consistent data products to streamline coordination across services and domains.
Ready to try out Materialize? You can sign up for a free cloud trial or download our community edition, which is free forever for deployments using less than 24 GiB of memory and 48 GiB of disk!
Have questions? We'd love to hear from you:
Materialize focuses on providing correct and consistent answers with minimal latency, and does not ask you to accept either approximate answers or eventual consistency. This guarantee holds even when joining data from multiple upstream systems. Whenever Materialize answers a query, that answer is the correct result on some specific (and recent) version of your data. Materialize does all of this by recasting your SQL queries as dataflows, which can react efficiently to changes in your data as they happen.
Our fully managed service is cloud-native, featuring high availability through multi-active replication, horizontal scalability by seamlessly scaling dataflows across multiple machines, and near-infinite storage by leveraging cloud object storage (e.g., Amazon S3). You can self-manage Materialize using our Enterprise or Community editions.
We support a large fraction of PostgreSQL features and are actively expanding support for more built-in PostgreSQL functions. Please file an issue if you have an idea for an improvement!
Materialize can read data directly from a PostgreSQL or MySQL replication stream, from Kafka (and other Kafka API-compatible systems like Redpanda), or from SaaS applications via webhooks.
Once you've got the data in, define views and perform reads via the PostgreSQL protocol. Use your favorite SQL client, including the psql you probably already have on your system. Customers using Materialize in production tend to use dbt Core.
Materialize supports a comprehensive variety of SQL features, all using the PostgreSQL dialect and protocol:
- Joins, joins, joins! Materialize supports multi-column join conditions, multi-way joins, self-joins, cross-joins, inner joins, outer joins, etc.
- Delta-joins avoid intermediate state blowup compared to systems that can only plan nested binary joins - tested on joins of up to 64 relations.
- Support for subqueries. Materialize's SQL optimizer performs subquery decorrelation out-of-the-box, avoiding the need to manually rewrite subqueries into joins.
- Materialize can incrementally maintain views in the presence of arbitrary inserts, updates, and deletes. No asterisks.
- All the aggregations:
min,max,count,sum,stddev, etc. HAVINGORDER BYLIMITDISTINCT- JSON support in the PostgreSQL dialect including operators and functions like
->,->>,@>,?,jsonb_array_element,jsonb_each. Materialize automatically plans lateral joins for efficientjsonb_eachsupport. - Nest views on views on views!
- Multiple views that have overlapping subplans can share underlying indices for space and compute efficiency, so just declaratively define what you want, and we'll worry about how to efficiently maintain them.
We’ve also extended our SQL support to enable recursion that supports incrementally updating tree and graph structures.
Here's an example join query that works fine in Materialize, TPC-H query 15:
CREATE SOURCE tpch
FROM LOAD GENERATOR TPCH (SCALE FACTOR 1)
FOR ALL TABLES;
-- Views define commonly reused subqueries.
CREATE VIEW revenue (supplier_no, total_revenue) AS
SELECT
l_suppkey,
SUM(l_extendedprice * (1 - l_discount))
FROM
lineitem
WHERE
l_shipdate >= DATE '1996-01-01'
AND l_shipdate < DATE '1996-01-01' + INTERVAL '3' month
GROUP BY
l_suppkey;
-- The MATERIALIZED keyword is the trigger to begin
-- eagerly, consistently, and incrementally maintaining
-- results that are stored directly in durable storage.
CREATE MATERIALIZED VIEW tpch_q15 AS
SELECT
s_suppkey,
s_name,
s_address,
s_phone,
total_revenue
FROM
supplier,
revenue
WHERE
s_suppkey = supplier_no
AND total_revenue = (
SELECT
max(total_revenue)
FROM
revenue
)
ORDER BY
s_suppkey;
-- Creating an index keeps results always up to date and in memory.
-- In this example, the index will allow for fast point lookups of
-- individual supply keys.
CREATE INDEX tpch_q15_idx ON tpch_q15 (s_suppkey);Stream inserts, updates, and deletes on the underlying tables (lineitem and supplier), and Materialize keeps the materialized view incrementally updated. You can type SELECT * FROM tpch_q15 and expect to see the current results immediately!
Pull based: Use any PostgreSQL-compatible driver in any language/environment to make SELECT queries against your views. Tell them they're talking to a PostgreSQL database, they don't ever need to know otherwise. This is particularly helpful for pointing services and BI tools directly at Materialize.
Push based: Listen to changes directly using SUBSCRIBE or configure Materialize to stream results to a Kafka topic as soon as the views change. You can also copy updates to object storage.
Check out our documentation.
Materialize is provided as a self-managed product and a fully managed cloud service with credit-based pricing. Included in the price are proprietary cloud-native features like horizontal scalability, high availability, and a web management console.
We're big believers in advancing the frontier of human knowledge. To that end, the source code of the standalone database engine is publicly available, in this repository, and licensed under the BSL 1.1, converting to the open-source Apache 2.0 license after 4 years. As stated in the BSL, use of the standalone database engine on a single node is free forever.
Materialize depends upon many open source Rust crates. We maintain a list of these crates and their licenses, including links to their source repositories.
Materialize is primarily written in Rust.
Developers can find docs at doc/developer, and Rust API documentation is hosted at https://dev.materialize.com/api/rust/.
Contributions are welcome. Prospective code contributors might find the D-good for external contributors discussion label useful. See CONTRIBUTING.md for additional guidance.
Materialize is lovingly crafted by a team of developers and one bot. Join us.
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for materialize
Similar Open Source Tools
materialize
Materialize is a real-time data integration platform that creates and continually updates consistent views of transactional data from across your organization. Its SQL interface democratizes the ability to serve and access live data. Materialize can be deployed anywhere your infrastructure runs. Use Materialize to deliver fresh context for AI/RAG pipelines, power operational dashboards, and create more dynamic customer experiences without building time-consuming custom data pipelines. Materialize focuses on providing correct and consistent answers with minimal latency, and does not ask you to accept either approximate answers or eventual consistency. Materialize answers a query with the correct result on a specific version of your data. Materialize recasts SQL queries as dataflows, which can react efficiently to changes in your data as they happen. Materialize supports a large fraction of PostgreSQL features and is actively expanding support for more built-in PostgreSQL functions. Materialize can read data directly from PostgreSQL or MySQL replication stream, from Kafka, or from SaaS applications via webhooks. Once data is in, define views and perform reads via the PostgreSQL protocol. Materialize supports a comprehensive variety of SQL features, all using the PostgreSQL dialect and protocol. Materialize can incrementally maintain views in the presence of arbitrary inserts, updates, and deletes. Materialize supports recursion that enables incrementally updating tree and graph structures. Materialize is primarily written in Rust.
chronon
Chronon is a platform that simplifies and improves ML workflows by providing a central place to define features, ensuring point-in-time correctness for backfills, simplifying orchestration for batch and streaming pipelines, offering easy endpoints for feature fetching, and guaranteeing and measuring consistency. It offers benefits over other approaches by enabling the use of a broad set of data for training, handling large aggregations and other computationally intensive transformations, and abstracting away the infrastructure complexity of data plumbing.
morphik-core
Morphik is an AI-native toolset designed to help developers integrate context into their AI applications by providing tools to store, represent, and search unstructured data. It offers features such as multimodal search, fast metadata extraction, and integrations with existing tools. Morphik aims to address the challenges of traditional AI approaches that struggle with visually rich documents and provide a more comprehensive solution for understanding and processing complex data.
tau
Tau is a framework for building low maintenance & highly scalable cloud computing platforms that software developers will love. It aims to solve the high cost and time required to build, deploy, and scale software by providing a developer-friendly platform that offers autonomy and flexibility. Tau simplifies the process of building and maintaining a cloud computing platform, enabling developers to achieve 'Local Coding Equals Global Production' effortlessly. With features like auto-discovery, content-addressing, and support for WebAssembly, Tau empowers users to create serverless computing environments, host frontends, manage databases, and more. The platform also supports E2E testing and can be extended using a plugin system called orbit.
airbroke
Airbroke is an open-source error catcher tool designed for modern web applications. It provides a PostgreSQL-based backend with an Airbrake-compatible HTTP collector endpoint and a React-based frontend for error management. The tool focuses on simplicity, maintaining a small database footprint even under heavy data ingestion. Users can ask AI about issues, replay HTTP exceptions, and save/manage bookmarks for important occurrences. Airbroke supports multiple OAuth providers for secure user authentication and offers occurrence charts for better insights into error occurrences. The tool can be deployed in various ways, including building from source, using Docker images, deploying on Vercel, Render.com, Kubernetes with Helm, or Docker Compose. It requires Node.js, PostgreSQL, and specific system resources for deployment.
dataherald
Dataherald is a natural language-to-SQL engine built for enterprise-level question answering over structured data. It allows you to set up an API from your database that can answer questions in plain English. You can use Dataherald to: * Allow business users to get insights from the data warehouse without going through a data analyst * Enable Q+A from your production DBs inside your SaaS application * Create a ChatGPT plug-in from your proprietary data
PulsarRPA
PulsarRPA is a high-performance, distributed, open-source Robotic Process Automation (RPA) framework designed to handle large-scale RPA tasks with ease. It provides a comprehensive solution for browser automation, web content understanding, and data extraction. PulsarRPA addresses challenges of browser automation and accurate web data extraction from complex and evolving websites. It incorporates innovative technologies like browser rendering, RPA, intelligent scraping, advanced DOM parsing, and distributed architecture to ensure efficient, accurate, and scalable web data extraction. The tool is open-source, customizable, and supports cutting-edge information extraction technology, making it a preferred solution for large-scale web data extraction.
ChainForge
ChainForge is a visual programming environment for battle-testing prompts to LLMs. It is geared towards early-stage, quick-and-dirty exploration of prompts, chat responses, and response quality that goes beyond ad-hoc chatting with individual LLMs. With ChainForge, you can: * Query multiple LLMs at once to test prompt ideas and variations quickly and effectively. * Compare response quality across prompt permutations, across models, and across model settings to choose the best prompt and model for your use case. * Setup evaluation metrics (scoring function) and immediately visualize results across prompts, prompt parameters, models, and model settings. * Hold multiple conversations at once across template parameters and chat models. Template not just prompts, but follow-up chat messages, and inspect and evaluate outputs at each turn of a chat conversation. ChainForge comes with a number of example evaluation flows to give you a sense of what's possible, including 188 example flows generated from benchmarks in OpenAI evals. This is an open beta of Chainforge. We support model providers OpenAI, HuggingFace, Anthropic, Google PaLM2, Azure OpenAI endpoints, and Dalai-hosted models Alpaca and Llama. You can change the exact model and individual model settings. Visualization nodes support numeric and boolean evaluation metrics. ChainForge is built on ReactFlow and Flask.
lumigator
Lumigator is an open-source platform developed by Mozilla.ai to help users select the most suitable language model for their specific needs. It supports the evaluation of summarization tasks using sequence-to-sequence models such as BART and BERT, as well as causal models like GPT and Mistral. The platform aims to make model selection transparent, efficient, and empowering by providing a framework for comparing LLMs using task-specific metrics to evaluate how well a model fits a project's needs. Lumigator is in the early stages of development and plans to expand support to additional machine learning tasks and use cases in the future.
wandb
Weights & Biases (W&B) is a platform that helps users build better machine learning models faster by tracking and visualizing all components of the machine learning pipeline, from datasets to production models. It offers tools for tracking, debugging, evaluating, and monitoring machine learning applications. W&B provides integrations with popular frameworks like PyTorch, TensorFlow/Keras, Hugging Face Transformers, PyTorch Lightning, XGBoost, and Sci-Kit Learn. Users can easily log metrics, visualize performance, and compare experiments using W&B. The platform also supports hosting options in the cloud or on private infrastructure, making it versatile for various deployment needs.
ask-astro
Ask Astro is an open-source reference implementation of Andreessen Horowitz's LLM Application Architecture built by Astronomer. It provides an end-to-end example of a Q&A LLM application used to answer questions about Apache Airflow® and Astronomer. Ask Astro includes Airflow DAGs for data ingestion, an API for business logic, a Slack bot, a public UI, and DAGs for processing user feedback. The tool is divided into data retrieval & embedding, prompt orchestration, and feedback loops.
serena
Serena is a powerful coding agent that integrates with existing LLMs to provide essential semantic code retrieval and editing tools. It is free to use and does not require API keys or subscriptions. Serena can be used for coding tasks such as analyzing, planning, and editing code directly on your codebase. It supports various programming languages and offers semantic code analysis capabilities through language servers. Serena can be integrated with different LLMs using the model context protocol (MCP) or Agno framework. The tool provides a range of functionalities for code retrieval, editing, and execution, making it a versatile coding assistant for developers.
pathway
Pathway is a Python data processing framework for analytics and AI pipelines over data streams. It's the ideal solution for real-time processing use cases like streaming ETL or RAG pipelines for unstructured data. Pathway comes with an **easy-to-use Python API** , allowing you to seamlessly integrate your favorite Python ML libraries. Pathway code is versatile and robust: **you can use it in both development and production environments, handling both batch and streaming data effectively**. The same code can be used for local development, CI/CD tests, running batch jobs, handling stream replays, and processing data streams. Pathway is powered by a **scalable Rust engine** based on Differential Dataflow and performs incremental computation. Your Pathway code, despite being written in Python, is run by the Rust engine, enabling multithreading, multiprocessing, and distributed computations. All the pipeline is kept in memory and can be easily deployed with **Docker and Kubernetes**. You can install Pathway with pip: `pip install -U pathway` For any questions, you will find the community and team behind the project on Discord.
WilmerAI
WilmerAI is a middleware system designed to process prompts before sending them to Large Language Models (LLMs). It categorizes prompts, routes them to appropriate workflows, and generates manageable prompts for local models. It acts as an intermediary between the user interface and LLM APIs, supporting multiple backend LLMs simultaneously. WilmerAI provides API endpoints compatible with OpenAI API, supports prompt templates, and offers flexible connections to various LLM APIs. The project is under heavy development and may contain bugs or incomplete code.
council
Council is an open-source platform designed for the rapid development and deployment of customized generative AI applications using teams of agents. It extends the LLM tool ecosystem by providing advanced control flow and scalable oversight for AI agents. Users can create sophisticated agents with predictable behavior by leveraging Council's powerful approach to control flow using Controllers, Filters, Evaluators, and Budgets. The framework allows for automated routing between agents, comparing, evaluating, and selecting the best results for a task. Council aims to facilitate packaging and deploying agents at scale on multiple platforms while enabling enterprise-grade monitoring and quality control.
chat-with-your-data-solution-accelerator
Chat with your data using OpenAI and AI Search. This solution accelerator uses an Azure OpenAI GPT model and an Azure AI Search index generated from your data, which is integrated into a web application to provide a natural language interface, including speech-to-text functionality, for search queries. Users can drag and drop files, point to storage, and take care of technical setup to transform documents. There is a web app that users can create in their own subscription with security and authentication.
For similar tasks
materialize
Materialize is a real-time data integration platform that creates and continually updates consistent views of transactional data from across your organization. Its SQL interface democratizes the ability to serve and access live data. Materialize can be deployed anywhere your infrastructure runs. Use Materialize to deliver fresh context for AI/RAG pipelines, power operational dashboards, and create more dynamic customer experiences without building time-consuming custom data pipelines. Materialize focuses on providing correct and consistent answers with minimal latency, and does not ask you to accept either approximate answers or eventual consistency. Materialize answers a query with the correct result on a specific version of your data. Materialize recasts SQL queries as dataflows, which can react efficiently to changes in your data as they happen. Materialize supports a large fraction of PostgreSQL features and is actively expanding support for more built-in PostgreSQL functions. Materialize can read data directly from PostgreSQL or MySQL replication stream, from Kafka, or from SaaS applications via webhooks. Once data is in, define views and perform reads via the PostgreSQL protocol. Materialize supports a comprehensive variety of SQL features, all using the PostgreSQL dialect and protocol. Materialize can incrementally maintain views in the presence of arbitrary inserts, updates, and deletes. Materialize supports recursion that enables incrementally updating tree and graph structures. Materialize is primarily written in Rust.
For similar jobs
databerry
Chaindesk is a no-code platform that allows users to easily set up a semantic search system for personal data without technical knowledge. It supports loading data from various sources such as raw text, web pages, files (Word, Excel, PowerPoint, PDF, Markdown, Plain Text), and upcoming support for web sites, Notion, and Airtable. The platform offers a user-friendly interface for managing datastores, querying data via a secure API endpoint, and auto-generating ChatGPT Plugins for each datastore. Chaindesk utilizes a Vector Database (Qdrant), Openai's text-embedding-ada-002 for embeddings, and has a chunk size of 1024 tokens. The technology stack includes Next.js, Joy UI, LangchainJS, PostgreSQL, Prisma, and Qdrant, inspired by the ChatGPT Retrieval Plugin.
OAD
OAD is a powerful open-source tool for analyzing and visualizing data. It provides a user-friendly interface for exploring datasets, generating insights, and creating interactive visualizations. With OAD, users can easily import data from various sources, clean and preprocess data, perform statistical analysis, and create customizable visualizations to communicate findings effectively. Whether you are a data scientist, analyst, or researcher, OAD can help you streamline your data analysis workflow and uncover valuable insights from your data.
sqlcoder
Defog's SQLCoder is a family of state-of-the-art large language models (LLMs) designed for converting natural language questions into SQL queries. It outperforms popular open-source models like gpt-4 and gpt-4-turbo on SQL generation tasks. SQLCoder has been trained on more than 20,000 human-curated questions based on 10 different schemas, and the model weights are licensed under CC BY-SA 4.0. Users can interact with SQLCoder through the 'transformers' library and run queries using the 'sqlcoder launch' command in the terminal. The tool has been tested on NVIDIA GPUs with more than 16GB VRAM and Apple Silicon devices with some limitations. SQLCoder offers a demo on their website and supports quantized versions of the model for consumer GPUs with sufficient memory.
TableLLM
TableLLM is a large language model designed for efficient tabular data manipulation tasks in real office scenarios. It can generate code solutions or direct text answers for tasks like insert, delete, update, query, merge, and chart operations on tables embedded in spreadsheets or documents. The model has been fine-tuned based on CodeLlama-7B and 13B, offering two scales: TableLLM-7B and TableLLM-13B. Evaluation results show its performance on benchmarks like WikiSQL, Spider, and self-created table operation benchmark. Users can use TableLLM for code and text generation tasks on tabular data.
mlcraft
Synmetrix (prev. MLCraft) is an open source data engineering platform and semantic layer for centralized metrics management. It provides a complete framework for modeling, integrating, transforming, aggregating, and distributing metrics data at scale. Key features include data modeling and transformations, semantic layer for unified data model, scheduled reports and alerts, versioning, role-based access control, data exploration, caching, and collaboration on metrics modeling. Synmetrix leverages Cube (Cube.js) for flexible data models that consolidate metrics from various sources, enabling downstream distribution via a SQL API for integration into BI tools, reporting, dashboards, and data science. Use cases include data democratization, business intelligence, embedded analytics, and enhancing accuracy in data handling and queries. The tool speeds up data-driven workflows from metrics definition to consumption by combining data engineering best practices with self-service analytics capabilities.
data-scientist-roadmap2024
The Data Scientist Roadmap2024 provides a comprehensive guide to mastering essential tools for data science success. It includes programming languages, machine learning libraries, cloud platforms, and concepts categorized by difficulty. The roadmap covers a wide range of topics from programming languages to machine learning techniques, data visualization tools, and DevOps/MLOps tools. It also includes web development frameworks and specific concepts like supervised and unsupervised learning, NLP, deep learning, reinforcement learning, and statistics. Additionally, it delves into DevOps tools like Airflow and MLFlow, data visualization tools like Tableau and Matplotlib, and other topics such as ETL processes, optimization algorithms, and financial modeling.
VMind
VMind is an open-source solution for intelligent visualization, providing an intelligent chart component based on LLM by VisActor. It allows users to create chart narrative works with natural language interaction, edit charts through dialogue, and export narratives as videos or GIFs. The tool is easy to use, scalable, supports various chart types, and offers one-click export functionality. Users can customize chart styles, specify themes, and aggregate data using LLM models. VMind aims to enhance efficiency in creating data visualization works through dialogue-based editing and natural language interaction.
quadratic
Quadratic is a modern multiplayer spreadsheet application that integrates Python, AI, and SQL functionalities. It aims to streamline team collaboration and data analysis by enabling users to pull data from various sources and utilize popular data science tools. The application supports building dashboards, creating internal tools, mixing data from different sources, exploring data for insights, visualizing Python workflows, and facilitating collaboration between technical and non-technical team members. Quadratic is built with Rust + WASM + WebGL to ensure seamless performance in the browser, and it offers features like WebGL Grid, local file management, Python and Pandas support, Excel formula support, multiplayer capabilities, charts and graphs, and team support. The tool is currently in Beta with ongoing development for additional features like JS support, SQL database support, and AI auto-complete.