
AI-Makerspace
AI Makerspace: Blueprints for developing AI applications with state-of-the-art technologies.
Stars: 63

README:
Advances in innovation of AI tools and technologies enable us to solve problems faster, easier, and more effectively. As the technologies grow in complexity and diversity, we experience a growing need for guiding innovation teams through rapid prototyping and user-centred development.
AI Makerspace repository is a hub of blueprint templates for using state-of-the-art technologies in the rapid prototyping of AI use cases. Working closely with cross-functional innovation teams at Digital Product School of UnternehmerTUM, we guide the teams through AI Design Thinking/Engineering, Lean AI Engineering, Explainable AI (XAI), Responsible and Ethical AI, as well as User Experience (UX) of machine learning products.
In addition, we are on an exciting journey to develop scalable coaching solutions through our 🚀 Agentic AI Coaching project 🚀, and we warmly invite you to contribute and be a part of this initiative.
Each folder of our GitHub repository is self-explanatory for using the blueprint templates of selected technologies and AI use cases. Here is the list of some of the tools, platforms, and applications that we have explored:
- HuggingFace
- GKE-Autopilot
- Heroku
- CloudRun
- VertexAI
- FastAPI
- AWS SageMaker
- Tableau
- CrewAI for building multi-agent systems
- Open Source LLM
- OpenAI GPT
- Streamlit
- Gradio
- PyCaret
- Data Version Control
- Docker
- Assembly AI
- PyTorch
- TensorFlow
- Flask
- Microservices
- Agno for building multi-modal agents
- Agentic AI Coaching
- Rapid Prototyping Agent: Tool Research and Use Case Coding Assistant
- Retrieval-Augmented Generation (RAG)
- 3D Maps, AR & 3D Geo AI interactive applications
- Chatbot
- Emotion detection
- Offensive speech detection
- Keyword extraction
- PDF question-answering
- Text translation
- Text auto-completion
- Text to Speech
- Summarization
- Speech recognition
- Image Generation
- Image Caption Generation
- Neural style transfer
- Synthetic data generation
- Accident prediction
💥 In addition, you can find our curated list of resources to help AI prototyping on our Wiki page: Curated AI Resources
📫 For any questions and if you are interested in receiving our exclusive community offers, fill out this application form.
Enjoy & Rock!
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for AI-Makerspace
Similar Open Source Tools

awesome-LLM-resourses
A comprehensive repository of resources for Chinese large language models (LLMs), including data processing tools, fine-tuning frameworks, inference libraries, evaluation platforms, RAG engines, agent frameworks, books, courses, tutorials, and tips. The repository covers a wide range of tools and resources for working with LLMs, from data labeling and processing to model fine-tuning, inference, evaluation, and application development. It also includes resources for learning about LLMs through books, courses, and tutorials, as well as insights and strategies from building with LLMs.

ai-science-training-series
This repository contains a student training series focusing on AI-driven science on supercomputers. It covers topics such as ALCF systems overview, AI on supercomputers, neural networks, LLMs, and parallel training techniques. The content is organized into subdirectories with prefixed indexes for easy navigation. The series aims to provide hands-on experience and knowledge in utilizing AI on supercomputers for scientific research.

awesome-generative-ai-guide
This repository serves as a comprehensive hub for updates on generative AI research, interview materials, notebooks, and more. It includes monthly best GenAI papers list, interview resources, free courses, and code repositories/notebooks for developing generative AI applications. The repository is regularly updated with the latest additions to keep users informed and engaged in the field of generative AI.

SuperKnowa
SuperKnowa is a fast framework to build Enterprise RAG (Retriever Augmented Generation) Pipelines at Scale, powered by watsonx. It accelerates Enterprise Generative AI applications to get prod-ready solutions quickly on private data. The framework provides pluggable components for tackling various Generative AI use cases using Large Language Models (LLMs), allowing users to assemble building blocks to address challenges in AI-driven text generation. SuperKnowa is battle-tested from 1M to 200M private knowledge base & scaled to billions of retriever tokens.

End-to-End-LLM
The End-to-End LLM Bootcamp is a comprehensive training program that covers the entire process of developing and deploying large language models. Participants learn to preprocess datasets, train models, optimize performance using NVIDIA technologies, understand guardrail prompts, and deploy AI pipelines using Triton Inference Server. The bootcamp includes labs, challenges, and practical applications, with a total duration of approximately 7.5 hours. It is designed for individuals interested in working with advanced language models and AI technologies.

ianvs
Ianvs is a distributed synergy AI benchmarking project incubated in KubeEdge SIG AI. It aims to test the performance of distributed synergy AI solutions following recognized standards, providing end-to-end benchmark toolkits, test environment management tools, test case control tools, and benchmark presentation tools. It also collaborates with other organizations to establish comprehensive benchmarks and related applications. The architecture includes critical components like Test Environment Manager, Test Case Controller, Generation Assistant, Simulation Controller, and Story Manager. Ianvs documentation covers quick start, guides, dataset descriptions, algorithms, user interfaces, stories, and roadmap.

AI.Labs
AI.Labs is an open-source project that integrates advanced artificial intelligence technologies to create a powerful AI platform. It focuses on integrating AI services like large language models, speech recognition, and speech synthesis for functionalities such as dialogue, voice interaction, and meeting transcription. The project also includes features like a large language model dialogue system, speech recognition for meeting transcription, speech-to-text voice synthesis, integration of translation and chat, and uses technologies like C#, .Net, SQLite database, XAF, OpenAI API, TTS, and STT.

learn-generative-ai
Learn Cloud Applied Generative AI Engineering (GenEng) is a course focusing on the application of generative AI technologies in various industries. The course covers topics such as the economic impact of generative AI, the role of developers in adopting and integrating generative AI technologies, and the future trends in generative AI. Students will learn about tools like OpenAI API, LangChain, and Pinecone, and how to build and deploy Large Language Models (LLMs) for different applications. The course also explores the convergence of generative AI with Web 3.0 and its potential implications for decentralized intelligence.

awesome-openvino
Awesome OpenVINO is a curated list of AI projects based on the OpenVINO toolkit, offering a rich assortment of projects, libraries, and tutorials covering various topics like model optimization, deployment, and real-world applications across industries. It serves as a valuable resource continuously updated to maximize the potential of OpenVINO in projects, featuring projects like Stable Diffusion web UI, Visioncom, FastSD CPU, OpenVINO AI Plugins for GIMP, and more.

CryptoToken-Sender-Airdrop-Staking-Liquidity
The CryptoToken-Sender-Airdrop-Staking-Liquidity repository provides an ultimate tool for efficient and automated token distribution across blockchain wallets. It is designed for projects, DAOs, and blockchain-based organizations that need to distribute tokens to thousands of wallet addresses with ease. The platform offers advanced integrations with DeFi protocols for staking, liquidity farming, and automated payments. Users can send tokens in bulk, distribute tokens to multiple wallets instantly, optimize gas fees, integrate with DeFi protocols for liquidity provision and staking, set up recurring payments, automate liquidity farming strategies, support multi-chain operations, monitor transactions in real-time, and work with various token standards. The repository includes features for connecting to blockchains, importing and managing wallets, customizing mailing parameters, monitoring transaction status, logging transactions, and providing a user-friendly interface for configuration and operation.

LLM-GenAI-Transformers-Notebooks
This repository is a collection of LLM notebooks with tutorials and projects. It covers topics such as Transformers tutorials, LLM notebooks and their applications, tools and technologies of GenAI, courses in GenAI, and Generative AI blogs/articles. Contributions are welcome.

nlp-llms-resources
The 'nlp-llms-resources' repository is a comprehensive resource list for Natural Language Processing (NLP) and Large Language Models (LLMs). It covers a wide range of topics including traditional NLP datasets, data acquisition, libraries for NLP, neural networks, sentiment analysis, optical character recognition, information extraction, semantics, topic modeling, multilingual NLP, domain-specific LLMs, vector databases, ethics, costing, books, courses, surveys, aggregators, newsletters, papers, conferences, and societies. The repository provides valuable information and resources for individuals interested in NLP and LLMs.

llvm-aie
This repository extends the LLVM framework to generate code for use with AMD/Xilinx AI Engine processors. AI Engine processors are in-order, exposed-pipeline VLIW processors focused on application acceleration for AI, Machine Learning, and DSP applications. The repository adds LLVM support for specific features like non-power of 2 pointers, operand latencies, resource conflicts, negative operand latencies, slot assignment, relocations, code alignment restrictions, and register allocation. It includes support for Clang, LLD, binutils, Compiler-RT, and LLVM-LIBC.