
uptrain
UpTrain is an open-source unified platform to evaluate and improve Generative AI applications. We provide grades for 20+ preconfigured checks (covering language, code, embedding use-cases), perform root cause analysis on failure cases and give insights on how to resolve them.
Stars: 2010

UpTrain is an open-source unified platform to evaluate and improve Generative AI applications. We provide grades for 20+ preconfigured evaluations (covering language, code, embedding use cases), perform root cause analysis on failure cases and give insights on how to resolve them.
README:
UpTrain is an open-source unified platform to evaluate and improve Generative AI applications. We provide grades for 20+ preconfigured evaluations (covering language, code, embedding use cases), perform root cause analysis on failure cases and give insights on how to resolve them.
UpTrain Dashboard is a web-based interface that runs on your local machine. You can use the dashboard to evaluate your LLM applications, view the results, and perform a root cause analysis.
Support for 20+ pre-configured evaluations such as Response Completeness, Factual Accuracy, Context Conciseness etc.
All the evaluations and analysis run locally on your system, ensuring that the data never leaves your secure environment (except for LLM calls while using model grading checks)
Experiment with different embedding models like text-embedding-3-large/small, text-embedding-3-ada, baai/bge-large, etc. UpTrain supports HuggingFace models, Replicate endpoints, or custom models hosted on your endpoint.
You can perform root cause analysis on cases with either negative user feedback or low evaluation scores to understand which part of your LLM pipeline is giving suboptimal results. Check out the supported RCA templates.
We allow you to use any of OpenAI, Anthropic, Mistral, Azure's Openai endpoints or open-source LLMs hosted on Anyscale to be used as evaluators.
UpTrain provides tons of ways to customize evaluations. You can customize the evaluation method (chain of thought vs classify), few-shot examples, and scenario description. You can also create custom evaluators.
- Collaborate with your team
- Embedding visualization via UMAP and Clustering
- Pattern recognition among failure cases
- Prompt improvement suggestions
The UpTrain dashboard is a web-based interface that allows you to evaluate your LLM applications. It is a self-hosted dashboard that runs on your local machine. You don't need to write any code to use the dashboard. You can use the dashboard to evaluate your LLM applications, view the results, and perform a root cause analysis.
Before you start, ensure you have docker installed on your machine. If not, you can install it from here.
The following commands will download the UpTrain dashboard and start it on your local machine.
# Clone the repository
git clone https://github.com/uptrain-ai/uptrain
cd uptrain
# Run UpTrain
bash run_uptrain.sh
NOTE: UpTrain Dashboard is currently in Beta version. We would love your feedback to improve it.
If you are a developer and want to integrate UpTrain evaluations into your application, you can use the UpTrain package. This allows for a more programmatic way to evaluate your LLM applications.
pip install uptrain
You can evaluate your responses via the open-source version by providing your OpenAI API key to run evaluations.
from uptrain import EvalLLM, Evals
import json
OPENAI_API_KEY = "sk-***************"
data = [{
'question': 'Which is the most popular global sport?',
'context': "The popularity of sports can be measured in various ways, including TV viewership, social media presence, number of participants, and economic impact. Football is undoubtedly the world's most popular sport with major events like the FIFA World Cup and sports personalities like Ronaldo and Messi, drawing a followership of more than 4 billion people. Cricket is particularly popular in countries like India, Pakistan, Australia, and England. The ICC Cricket World Cup and Indian Premier League (IPL) have substantial viewership. The NBA has made basketball popular worldwide, especially in countries like the USA, Canada, China, and the Philippines. Major tennis tournaments like Wimbledon, the US Open, French Open, and Australian Open have large global audiences. Players like Roger Federer, Serena Williams, and Rafael Nadal have boosted the sport's popularity. Field Hockey is very popular in countries like India, Netherlands, and Australia. It has a considerable following in many parts of the world.",
'response': 'Football is the most popular sport with around 4 billion followers worldwide'
}]
eval_llm = EvalLLM(openai_api_key=OPENAI_API_KEY)
results = eval_llm.evaluate(
data=data,
checks=[Evals.CONTEXT_RELEVANCE, Evals.FACTUAL_ACCURACY, Evals.RESPONSE_COMPLETENESS]
)
print(json.dumps(results, indent=3))
If you have any questions, please join our Slack community
Speak directly with the maintainers of UpTrain by booking a call here.
Eval | Description |
---|---|
Response Completeness | Grades whether the response has answered all the aspects of the question specified. |
Response Conciseness | Grades how concise the generated response is or if it has any additional irrelevant information for the question asked. |
Response Relevance | Grades how relevant the generated context was to the question specified. |
Response Validity | Grades if the response generated is valid or not. A response is considered to be valid if it contains any information. |
Response Consistency | Grades how consistent the response is with the question asked as well as with the context provided. |
Eval | Description |
---|---|
Context Relevance | Grades how relevant the context was to the question specified. |
Context Utilization | Grades how complete the generated response was for the question specified, given the information provided in the context. |
Factual Accuracy | Grades whether the response generated is factually correct and grounded by the provided context. |
Context Conciseness | Evaluates the concise context cited from an original context for irrelevant information. |
Context Reranking | Evaluates how efficient the reranked context is compared to the original context. |
Eval | Description |
---|---|
Language Features | Grades the quality and effectiveness of language in a response, focusing on factors such as clarity, coherence, conciseness, and overall communication. |
Tonality | Grades whether the generated response matches the required persona's tone |
Eval | Description |
---|---|
Code Hallucination | Grades whether the code present in the generated response is grounded by the context. |
Eval | Description |
---|---|
User Satisfaction | Grades how well the user's concerns are addressed and assesses their satisfaction based on provided conversation. |
Eval | Description |
---|---|
Custom Guideline | Allows you to specify a guideline and grades how well the LLM adheres to the provided guideline when giving a response. |
Custom Prompts | Allows you to create your own set of evaluations. |
Eval | Description |
---|---|
Response Matching | Compares and grades how well the response generated by the LLM aligns with the provided ground truth. |
Eval | Description |
---|---|
Prompt Injection | Grades whether the user's prompt is an attempt to make the LLM reveal its system prompts. |
Jailbreak Detection | Grades whether the user's prompt is an attempt to jailbreak (i.e. generate illegal or harmful responses). |
Eval | Description |
---|---|
Sub-Query Completeness | Evaluate whether all of the sub-questions generated from a user's query, taken together, cover all aspects of the user's query or not |
Multi-Query Accuracy | Evaluate whether the variants generated accurately represent the original query |
Eval Frameworks | LLM Providers | LLM Packages | Serving frameworks | LLM Observability | Vector DBs |
---|---|---|---|---|---|
OpenAI Evals | OpenAI | LlamaIndex | Ollama | Langfuse | Qdrant |
Azure | Together AI | Helicone | FAISS | ||
Claude | Anyscale | Zeno | Chroma | ||
Mistral | Replicate | ||||
HuggingFace |
More integrations are coming soon. If you have a specific integration in mind, please let us know by creating an issue.
Most popular LLMs like GPT-4, GPT-3.5-turbo, Claude-2.1 etc., are closed-source, i.e. exposed via an API with very little visibility on what happens under the hood. There are many reported instances of prompt drift (or GPT-4 becoming lazy) and research work exploring the degradation in model quality. This benchmark is an attempt to track the change in model behaviour by evaluating its response on a fixed dataset.
You can find the benchmark here.
Having worked with ML and NLP models for the last 8 years, we were continuosly frustated with numerous hidden failures in our models which led to us building UpTrain. UpTrain was initially started as an ML observability tool with checks to identify regression in accuracy.
However we soon released that LLM developers face an even bigger problem -- there is no good way to measure accuracy of their LLM applications, let alone identify regression.
We also saw release of OpenAI evals, where they proposed the use of LLMs to grade the model responses. Furthermore, we gained confidence to approach this after reading how Anthropic leverages RLAIF and dived right into the LLM evaluations research (We are soon releasing a repository of awesome evaluations research).
So, come today, UpTrain is our attempt to bring order to LLM chaos and contribute back to the community. While a majority of developers still rely on intuition and productionise prompt changes by reviewing a couple of cases, we have heard enough regression stories to believe "evaluations and improvement" will be a key part of LLM ecosystem as the space matures.
-
Robust evaluations allows you to systematically experiment with different configurations and prevent any regressions by helping objectively select the best choice.
-
It helps you understand where your systems are going wrong, find the root cause(s) and fix them - long before your end users complain and potentially churn out.
-
Evaluations like prompt injection and jailbreak detection are essential to maintain safety and security of your LLM applications.
-
Evaluations help you provide transparency and build trust with your end-users - especially relevant if you are selling to enterprises.
-
We understand that there is no one-size-fits-all solution when it come to evaluations. We are increasingly seeing the desire from developers to modify the evaluation prompt or set of choices or the few shot examples, etc. We believe the best developer experience lies in open-source, instead of exposing 20 different parameters.
-
Foster innovation: The field of LLM evaluations and using LLM-as-a-judge is still pretty nascent. We see a lot of exciting research happening, almost on a daily basis and being open-source provides the right platform to us and our community to implement those techniques and innovate faster.
We are continuously striving to enhance UpTrain, and there are several ways you can contribute:
-
Notice any issues or areas for improvement: If you spot anything wrong or have ideas for enhancements, please create an issue on our GitHub repository.
-
Contribute directly: If you see an issue you can fix or have code improvements to suggest, feel free to contribute directly to the repository.
-
Request custom evaluations: If your application requires a tailored evaluation, let us know, and we'll add it to the repository.
-
Integrate with your tools: Need integration with your existing tools? Reach out, and we'll work on it.
-
Assistance with evaluations: If you need assistance with evaluations, post your query on our Slack channel, and we'll resolve it promptly.
-
Show your support: Show your support by starring us โญ on GitHub to track our progress.
-
Spread the word: If you like what we've built, give us a shoutout on Twitter!
Your contributions and support are greatly appreciated! Thank you for being a part of UpTrain's journey.
This repo is published under Apache 2.0 license and we are committed to adding more functionalities to the UpTrain open-source repo. We also have a managed version if you just want a more hands-off experience. Please book a demo call here.
We are building UpTrain in public. Help us improve by giving your feedback here.
We welcome contributions to UpTrain. Please see our contribution guide for details.
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for uptrain
Similar Open Source Tools

uptrain
UpTrain is an open-source unified platform to evaluate and improve Generative AI applications. We provide grades for 20+ preconfigured evaluations (covering language, code, embedding use cases), perform root cause analysis on failure cases and give insights on how to resolve them.

hass-ollama-conversation
The Ollama Conversation integration adds a conversation agent powered by Ollama in Home Assistant. This agent can be used in automations to query information provided by Home Assistant about your house, including areas, devices, and their states. Users can install the integration via HACS and configure settings such as API timeout, model selection, context size, maximum tokens, and other parameters to fine-tune the responses generated by the AI language model. Contributions to the project are welcome, and discussions can be held on the Home Assistant Community platform.

connery-sdk
Connery SDK is an open-source NPM package that provides an SDK and CLI for developing plugins and actions. The SDK offers a JavaScript API to define plugins and actions, which are then packaged into a plugin server with a standardized REST API. This enables automation in the development process and simplifies handling authorization, input validation, and logging. Users can focus on the logic of their actions while the standardized API allows various clients to interact with actions uniformly. Actions can communicate with external APIs, databases, or services, making it versatile for creating AI plugins and actions.

cloudberrydb
Cloudberry Database (CBDB or CloudberryDB) is a next-generation unified database for analytics and AI. It is created by a bunch of original Greenplum Database developers and ASF committers. Cloudberry Database aims to bring modern computing capabilities to the traditional distributed MPP database to support Analytics and AI/ML workloads in one platform.

haystack
Haystack is an end-to-end LLM framework that allows you to build applications powered by LLMs, Transformer models, vector search and more. Whether you want to perform retrieval-augmented generation (RAG), document search, question answering or answer generation, Haystack can orchestrate state-of-the-art embedding models and LLMs into pipelines to build end-to-end NLP applications and solve your use case.

venice
Venice is a derived data storage platform, providing the following characteristics: 1. High throughput asynchronous ingestion from batch and streaming sources (e.g. Hadoop and Samza). 2. Low latency online reads via remote queries or in-process caching. 3. Active-active replication between regions with CRDT-based conflict resolution. 4. Multi-cluster support within each region with operator-driven cluster assignment. 5. Multi-tenancy, horizontal scalability and elasticity within each cluster. The above makes Venice particularly suitable as the stateful component backing a Feature Store, such as Feathr. AI applications feed the output of their ML training jobs into Venice and then query the data for use during online inference workloads.

cloudberry
Apache Cloudberry (Incubating) is an advanced and mature open-source Massively Parallel Processing (MPP) database, evolving from the open-source version of the Pivotal Greenplum Databaseยฎ๏ธ. It features a newer PostgreSQL kernel and advanced enterprise capabilities, serving as a data warehouse for large-scale analytics and AI/ML workloads. The main repository includes ecosystem repositories for the website, extensions, connectors, adapters, and utilities.

OpenContracts
OpenContracts is a free and open-source document analytics platform designed to empower knowledge owners and subject matter experts. It supports multiple document formats, ingestion pipelines, and custom document analytics tools. Users can manage documents, define metadata schemas, extract layout features, generate vector embeddings, deploy custom analyzers, support new document formats, annotate documents, extract bulk data, and create bespoke data extraction workflows. The tool aims to provide a standardized architecture for analyzing contracts and making data portable, with a focus on PDF and text-based formats. It includes features like document management, layout parsing, pluggable architectures, human annotation interface, and a custom LLM framework for conversation management and real-time streaming.

BotServer
General Bot is a chat bot server that accelerates bot development by providing code base, resources, deployment to the cloud, and templates for creating new bots. It allows modification of bot packages without code through a database and service backend. Users can develop bot packages using custom code in editors like Visual Studio Code, Atom, or Brackets. The tool supports creating bots by copying and pasting files and using favorite tools from Office or Photoshop. It also enables building custom dialogs with BASIC for extending bots.

fenic
fenic is an opinionated DataFrame framework from typedef.ai for building AI and agentic applications. It transforms unstructured and structured data into insights using familiar DataFrame operations enhanced with semantic intelligence. With support for markdown, transcripts, and semantic operators, plus efficient batch inference across various model providers. fenic is purpose-built for LLM inference, providing a query engine designed for AI workloads, semantic operators as first-class citizens, native unstructured data support, production-ready infrastructure, and a familiar DataFrame API.

koordinator
Koordinator is a QoS based scheduling system for hybrid orchestration workloads on Kubernetes. It aims to improve runtime efficiency and reliability of latency sensitive workloads and batch jobs, simplify resource-related configuration tuning, and increase pod deployment density. It enhances Kubernetes user experience by optimizing resource utilization, improving performance, providing flexible scheduling policies, and easy integration into existing clusters.

dify
Dify is an open-source LLM app development platform that combines AI workflow, RAG pipeline, agent capabilities, model management, observability features, and more. It allows users to quickly go from prototype to production. Key features include: 1. Workflow: Build and test powerful AI workflows on a visual canvas. 2. Comprehensive model support: Seamless integration with hundreds of proprietary / open-source LLMs from dozens of inference providers and self-hosted solutions. 3. Prompt IDE: Intuitive interface for crafting prompts, comparing model performance, and adding additional features. 4. RAG Pipeline: Extensive RAG capabilities that cover everything from document ingestion to retrieval. 5. Agent capabilities: Define agents based on LLM Function Calling or ReAct, and add pre-built or custom tools. 6. LLMOps: Monitor and analyze application logs and performance over time. 7. Backend-as-a-Service: All of Dify's offerings come with corresponding APIs for easy integration into your own business logic.

buildel
Buildel is an AI automation platform that empowers users to create versatile workflows without writing code. It supports multiple providers and interfaces, offers pre-built use cases, and allows users to bring their own API keys. Ideal for AI-powered document retrieval, conversational interfaces, and data integration. Users can get started at app.buildel.ai or run Buildel locally with Node.js, Elixir/Erlang, Docker, Git, and JQ installed. Join the community on Discord for support and discussions.

evalkit
EvalKit is an open-source TypeScript library for evaluating and improving the performance of large language models (LLMs). It helps developers ensure the reliability, accuracy, and trustworthiness of their AI models. The library provides various metrics such as Bias Detection, Coherence, Faithfulness, Hallucination, Intent Detection, and Semantic Similarity. EvalKit is designed to be user-friendly with detailed documentation, tutorials, and recipes for different use cases and LLM providers. It requires Node.js 18+ and an OpenAI API Key for installation and usage. Contributions from the community are welcome under the Apache 2.0 License.

joplin-plugin-jarvis
Jarvis is an AI note-taking assistant for Joplin, powered by online and offline LLMs (such as OpenAI's ChatGPT or GPT-4, Hugging Face, Google PaLM, Universal Sentence Encoder). You can chat with it (including prompt templates), use your personal notes as additional context in the chat, automatically annotate notes, perform semantic search, or compile an automatic review of the scientific literature.

Scrapegraph-demo
ScrapeGraphAI is a web scraping Python library that utilizes LangChain, LLM, and direct graph logic to create scraping pipelines. Users can specify the information they want to extract, and the library will handle the extraction process. This repository contains an official demo/trial for the ScrapeGraphAI library, showcasing its capabilities in web scraping tasks. The tool is designed to simplify the process of extracting data from websites by providing a user-friendly interface and powerful scraping functionalities.
For similar tasks

uptrain
UpTrain is an open-source unified platform to evaluate and improve Generative AI applications. We provide grades for 20+ preconfigured evaluations (covering language, code, embedding use cases), perform root cause analysis on failure cases and give insights on how to resolve them.

llm-applications
A comprehensive guide to building Retrieval Augmented Generation (RAG)-based LLM applications for production. This guide covers developing a RAG-based LLM application from scratch, scaling the major components, evaluating different configurations, implementing LLM hybrid routing, serving the application in a highly scalable and available manner, and sharing the impacts LLM applications have had on products.
For similar jobs

lollms-webui
LoLLMs WebUI (Lord of Large Language Multimodal Systems: One tool to rule them all) is a user-friendly interface to access and utilize various LLM (Large Language Models) and other AI models for a wide range of tasks. With over 500 AI expert conditionings across diverse domains and more than 2500 fine tuned models over multiple domains, LoLLMs WebUI provides an immediate resource for any problem, from car repair to coding assistance, legal matters, medical diagnosis, entertainment, and more. The easy-to-use UI with light and dark mode options, integration with GitHub repository, support for different personalities, and features like thumb up/down rating, copy, edit, and remove messages, local database storage, search, export, and delete multiple discussions, make LoLLMs WebUI a powerful and versatile tool.

Azure-Analytics-and-AI-Engagement
The Azure-Analytics-and-AI-Engagement repository provides packaged Industry Scenario DREAM Demos with ARM templates (Containing a demo web application, Power BI reports, Synapse resources, AML Notebooks etc.) that can be deployed in a customerโs subscription using the CAPE tool within a matter of few hours. Partners can also deploy DREAM Demos in their own subscriptions using DPoC.

minio
MinIO is a High Performance Object Storage released under GNU Affero General Public License v3.0. It is API compatible with Amazon S3 cloud storage service. Use MinIO to build high performance infrastructure for machine learning, analytics and application data workloads.

mage-ai
Mage is an open-source data pipeline tool for transforming and integrating data. It offers an easy developer experience, engineering best practices built-in, and data as a first-class citizen. Mage makes it easy to build, preview, and launch data pipelines, and provides observability and scaling capabilities. It supports data integrations, streaming pipelines, and dbt integration.

AiTreasureBox
AiTreasureBox is a versatile AI tool that provides a collection of pre-trained models and algorithms for various machine learning tasks. It simplifies the process of implementing AI solutions by offering ready-to-use components that can be easily integrated into projects. With AiTreasureBox, users can quickly prototype and deploy AI applications without the need for extensive knowledge in machine learning or deep learning. The tool covers a wide range of tasks such as image classification, text generation, sentiment analysis, object detection, and more. It is designed to be user-friendly and accessible to both beginners and experienced developers, making AI development more efficient and accessible to a wider audience.

tidb
TiDB is an open-source distributed SQL database that supports Hybrid Transactional and Analytical Processing (HTAP) workloads. It is MySQL compatible and features horizontal scalability, strong consistency, and high availability.

airbyte
Airbyte is an open-source data integration platform that makes it easy to move data from any source to any destination. With Airbyte, you can build and manage data pipelines without writing any code. Airbyte provides a library of pre-built connectors that make it easy to connect to popular data sources and destinations. You can also create your own connectors using Airbyte's no-code Connector Builder or low-code CDK. Airbyte is used by data engineers and analysts at companies of all sizes to build and manage their data pipelines.

labelbox-python
Labelbox is a data-centric AI platform for enterprises to develop, optimize, and use AI to solve problems and power new products and services. Enterprises use Labelbox to curate data, generate high-quality human feedback data for computer vision and LLMs, evaluate model performance, and automate tasks by combining AI and human-centric workflows. The academic & research community uses Labelbox for cutting-edge AI research.