vecs

vecs

Postgres/pgvector Python Client

Stars: 219

Visit
 screenshot

vecs is a Python client for managing and querying vector stores in PostgreSQL with the pgvector extension. It allows users to create collections of vectors with associated metadata, index the collections for fast search performance, and query the collections based on specified filters. The tool simplifies the process of working with vector data in a PostgreSQL database, making it easier to store, retrieve, and analyze vector information.

README:

vecs

Python version test status Pre-commit Status

PyPI version License Download count


Documentation: https://supabase.github.io/vecs/latest/

Source Code: https://github.com/supabase/vecs


vecs is a python client for managing and querying vector stores in PostgreSQL with the pgvector extension. This guide will help you get started with using vecs.

If you don't have a Postgres database with the pgvector ready, see hosting for easy options.

Installation

Requires:

  • Python 3.7+

You can install vecs using pip:

pip install vecs

Usage

Visit the quickstart guide for more complete info.

import vecs

DB_CONNECTION = "postgresql://<user>:<password>@<host>:<port>/<db_name>"

# create vector store client
vx = vecs.create_client(DB_CONNECTION)

# create a collection of vectors with 3 dimensions
docs = vx.get_or_create_collection(name="docs", dimension=3)

# add records to the *docs* collection
docs.upsert(
    records=[
        (
         "vec0",           # the vector's identifier
         [0.1, 0.2, 0.3],  # the vector. list or np.array
         {"year": 1973}    # associated  metadata
        ),
        (
         "vec1",
         [0.7, 0.8, 0.9],
         {"year": 2012}
        )
    ]
)

# index the collection for fast search performance
docs.create_index()

# query the collection filtering metadata for "year" = 2012
docs.query(
    data=[0.4,0.5,0.6],              # required
    limit=1,                         # number of records to return
    filters={"year": {"$eq": 2012}}, # metadata filters
)

# Returns: ["vec1"]

For Tasks:

Click tags to check more tools for each tasks

For Jobs:

Alternative AI tools for vecs

Similar Open Source Tools

For similar tasks

For similar jobs