mistral-inference

mistral-inference

Official inference library for Mistral models

Stars: 10114

Visit
 screenshot

Mistral Inference repository contains minimal code to run 7B, 8x7B, and 8x22B models. It provides model download links, installation instructions, and usage guidelines for running models via CLI or Python. The repository also includes information on guardrailing, model platforms, deployment, and references. Users can interact with models through commands like mistral-demo, mistral-chat, and mistral-common. Mistral AI models support function calling and chat interactions for tasks like testing models, chatting with models, and using Codestral as a coding assistant. The repository offers detailed documentation and links to blogs for further information.

README:

Mistral Inference

Open In Colab

This repository contains minimal code to run Mistral models.

Blog 7B: https://mistral.ai/news/announcing-mistral-7b/
Blog 8x7B: https://mistral.ai/news/mixtral-of-experts/
Blog 8x22B: https://mistral.ai/news/mixtral-8x22b/
Blog Codestral 22B: https://mistral.ai/news/codestral
Blog Codestral Mamba 7B: https://mistral.ai/news/codestral-mamba/
Blog Mathstral 7B: https://mistral.ai/news/mathstral/
Blog Nemo: https://mistral.ai/news/mistral-nemo/
Blog Mistral Large 2: https://mistral.ai/news/mistral-large-2407/
Blog Pixtral 12B: https://mistral.ai/news/pixtral-12b/ Blog Mistral Small 3.1: https://mistral.ai/news/mistral-small-3-1/

Discord: https://discord.com/invite/mistralai
Documentation: https://docs.mistral.ai/
Guardrailing: https://docs.mistral.ai/usage/guardrailing

Installation

Note: You will use a GPU to install mistral-inference, as it currently requires xformers to be installed and xformers itself needs a GPU for installation.

PyPI

pip install mistral-inference

Local

cd $HOME && git clone https://github.com/mistralai/mistral-inference
cd $HOME/mistral-inference && poetry install .

Model download

Direct links

Name Download md5sum
7B Instruct https://models.mistralcdn.com/mistral-7b-v0-3/mistral-7B-Instruct-v0.3.tar 80b71fcb6416085bcb4efad86dfb4d52
8x7B Instruct https://models.mistralcdn.com/mixtral-8x7b-v0-1/Mixtral-8x7B-v0.1-Instruct.tar (Updated model coming soon!) 8e2d3930145dc43d3084396f49d38a3f
8x22 Instruct https://models.mistralcdn.com/mixtral-8x22b-v0-3/mixtral-8x22B-Instruct-v0.3.tar 471a02a6902706a2f1e44a693813855b
7B Base https://models.mistralcdn.com/mistral-7b-v0-3/mistral-7B-v0.3.tar 0663b293810d7571dad25dae2f2a5806
8x7B Updated model coming soon! -
8x22B https://models.mistralcdn.com/mixtral-8x22b-v0-3/mixtral-8x22B-v0.3.tar a2fa75117174f87d1197e3a4eb50371a
Codestral 22B https://models.mistralcdn.com/codestral-22b-v0-1/codestral-22B-v0.1.tar 1ea95d474a1d374b1d1b20a8e0159de3
Mathstral 7B https://models.mistralcdn.com/mathstral-7b-v0-1/mathstral-7B-v0.1.tar 5f05443e94489c261462794b1016f10b
Codestral-Mamba 7B https://models.mistralcdn.com/codestral-mamba-7b-v0-1/codestral-mamba-7B-v0.1.tar d3993e4024d1395910c55db0d11db163
Nemo Base https://models.mistralcdn.com/mistral-nemo-2407/mistral-nemo-base-2407.tar c5d079ac4b55fc1ae35f51f0a3c0eb83
Nemo Instruct https://models.mistralcdn.com/mistral-nemo-2407/mistral-nemo-instruct-2407.tar 296fbdf911cb88e6f0be74cd04827fe7
Mistral Large 2 https://models.mistralcdn.com/mistral-large-2407/mistral-large-instruct-2407.tar fc602155f9e39151fba81fcaab2fa7c4

Note:

  • Important:
  • All of the listed models above support function calling. For example, Mistral 7B Base/Instruct v3 is a minor update to Mistral 7B Base/Instruct v2, with the addition of function calling capabilities.
  • The "coming soon" models will include function calling as well.
  • You can download the previous versions of our models from our docs.

From Hugging Face Hub

Name ID URL
Pixtral Large Instruct mistralai/Pixtral-Large-Instruct-2411 https://huggingface.co/mistralai/Pixtral-Large-Instruct-2411
Pixtral 12B Base mistralai/Pixtral-12B-Base-2409 https://huggingface.co/mistralai/Pixtral-12B-Base-2409
Pixtral 12B mistralai/Pixtral-12B-2409 https://huggingface.co/mistralai/Pixtral-12B-2409
Mistral Small 3.1 24B Base mistralai/Mistral-Small-3.1-24B-Base-2503 https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Base-2503
Mistral Small 3.1 24B Instruct mistralai/Mistral-Small-3.1-24B-Instruct-2503 https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Instruct-2503

Usage

News!!!: Mistral Large 2 is out. Read more about its capabilities here.

Create a local folder to store models

export MISTRAL_MODEL=$HOME/mistral_models
mkdir -p $MISTRAL_MODEL

Download any of the above links and extract the content, e.g.:

export 12B_DIR=$MISTRAL_MODEL/12B_Nemo
wget https://models.mistralcdn.com/mistral-nemo-2407/mistral-nemo-instruct-2407.tar
mkdir -p $12B_DIR
tar -xf mistral-nemo-instruct-2407.tar -C $12B_DIR

or

export M8x7B_DIR=$MISTRAL_MODEL/8x7b_instruct
wget https://models.mistralcdn.com/mixtral-8x7b-v0-1/Mixtral-8x7B-v0.1-Instruct.tar
mkdir -p $M8x7B_DIR
tar -xf Mixtral-8x7B-v0.1-Instruct.tar -C $M8x7B_DIR

For Hugging Face models' weights, here is an example to download Mistral Small 3.1 24B Instruct:

from pathlib import Path
from huggingface_hub import snapshot_download


mistral_models_path = Path.home().joinpath("mistral_models")

model_path = mistral_models_path / "mistral-small-3.1-instruct"
model_path.mkdir(parents=True, exist_ok=True)

repo_id = "mistralai/Mistral-Small-3.1-24B-Instruct-2503"

snapshot_download(
    repo_id=repo_id,
    allow_patterns=["params.json", "consolidated.safetensors", "tekken.json"],
    local_dir=model_path,
)

Usage

The following sections give an overview of how to run the model from the Command-line interface (CLI) or directly within Python.

CLI

  • Demo

To test that a model works in your setup, you can run the mistral-demo command. E.g. the 12B Mistral-Nemo model can be tested on a single GPU as follows:

mistral-demo $12B_DIR

Large models, such 8x7B and 8x22B have to be run in a multi-GPU setup. For these models, you can use the following command:

torchrun --nproc-per-node 2 --no-python mistral-demo $M8x7B_DIR

Note: Change --nproc-per-node to more GPUs if available.

  • Chat

To interactively chat with the models, you can make use of the mistral-chat command.

mistral-chat $12B_DIR --instruct --max_tokens 1024 --temperature 0.35

For large models, you can make use of torchrun.

torchrun --nproc-per-node 2 --no-python mistral-chat $M8x7B_DIR --instruct

Note: Change --nproc-per-node to more GPUs if necessary (e.g. for 8x22B).

  • Chat with Codestral

To use Codestral as a coding assistant you can run the following command using mistral-chat. Make sure $M22B_CODESTRAL is set to a valid path to the downloaded codestral folder, e.g. $HOME/mistral_models/Codestral-22B-v0.1

mistral-chat $M22B_CODESTRAL --instruct --max_tokens 256

If you prompt it with "Write me a function that computes fibonacci in Rust", the model should generate something along the following lines:

Sure, here's a simple implementation of a function that computes the Fibonacci sequence in Rust. This function takes an integer `n` as an argument and returns the `n`th Fibonacci number.

fn fibonacci(n: u32) -> u32 {
    match n {
        0 => 0,
        1 => 1,
        _ => fibonacci(n - 1) + fibonacci(n - 2),
    }
}

fn main() {
    let n = 10;
    println!("The {}th Fibonacci number is: {}", n, fibonacci(n));
}

This function uses recursion to calculate the Fibonacci number. However, it's not the most efficient solution because it performs a lot of redundant calculations. A more efficient solution would use a loop to iteratively calculate the Fibonacci numbers.

You can continue chatting afterwards, e.g. with "Translate it to Python".

  • Chat with Codestral-Mamba

To use Codestral-Mamba as a coding assistant you can run the following command using mistral-chat. Make sure $7B_CODESTRAL_MAMBA is set to a valid path to the downloaded codestral-mamba folder, e.g. $HOME/mistral_models/mamba-codestral-7B-v0.1.

You then need to additionally install the following packages:

pip install packaging mamba-ssm causal-conv1d transformers

before you can start chatting:

mistral-chat $7B_CODESTRAL_MAMBA --instruct --max_tokens 256
  • Chat with Mathstral

To use Mathstral as an assistant you can run the following command using mistral-chat. Make sure $7B_MATHSTRAL is set to a valid path to the downloaded codestral folder, e.g. $HOME/mistral_models/mathstral-7B-v0.1

mistral-chat $7B_MATHSTRAL --instruct --max_tokens 256

If you prompt it with "Albert likes to surf every week. Each surfing session lasts for 4 hours and costs $20 per hour. How much would Albert spend in 5 weeks?", the model should answer with the correct calculation.

You can then continue chatting afterwards, e.g. with "How much would he spend in a year?".

  • Chat with Mistral Small 3.1 24B Instruct

To use Mistral Small 3.1 24B Instruct as an assistant you can run the following command using mistral-chat. Make sure $MISTRAL_SMALL_3_1_INSTRUCT is set to a valid path to the downloaded mistral small folder, e.g. $HOME/mistral_models/mistral-small-3.1-instruct

    mistral-chat $MISTRAL_SMALL_3_1_INSTRUCT --instruct --max_tokens 256

If you prompt it with "The above image presents an image of which park ? Please give the hints to identify the park." with the following image URL https://huggingface.co/datasets/patrickvonplaten/random_img/resolve/main/yosemite.png, the model should answer with the Yosemite park and give hints to identify it.

You can then continue chatting afterwards, e.g. with "What is the name of the lake in the image?". The model should respond that it is not a lake but a river.

Python

  • Instruction Following:
from mistral_inference.transformer import Transformer
from mistral_inference.generate import generate

from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.protocol.instruct.messages import UserMessage
from mistral_common.protocol.instruct.request import ChatCompletionRequest


tokenizer = MistralTokenizer.from_file("./mistral-nemo-instruct-v0.1/tekken.json")  # change to extracted tokenizer file
model = Transformer.from_folder("./mistral-nemo-instruct-v0.1")  # change to extracted model dir

prompt = "How expensive would it be to ask a window cleaner to clean all windows in Paris. Make a reasonable guess in US Dollar."

completion_request = ChatCompletionRequest(messages=[UserMessage(content=prompt)])

tokens = tokenizer.encode_chat_completion(completion_request).tokens

out_tokens, _ = generate([tokens], model, max_tokens=1024, temperature=0.35, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
result = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0])

print(result)
  • Multimodal Instruction Following:
from pathlib import Path

from huggingface_hub import snapshot_download
from mistral_common.protocol.instruct.messages import ImageURLChunk, TextChunk
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_inference.generate import generate
from mistral_inference.transformer import Transformer

model_path = Path.home().joinpath("mistral_models") / "mistral-small-3.1-instruct" # change to extracted model

tokenizer = MistralTokenizer.from_file(model_path / "tekken.json")
model = Transformer.from_folder(model_path)

url = "https://huggingface.co/datasets/patrickvonplaten/random_img/resolve/main/yosemite.png"
prompt = "The above image presents an image of which park ? Please give the hints to identify the park."

user_content = [ImageURLChunk(image_url=url), TextChunk(text=prompt)]

tokens, images = tokenizer.instruct_tokenizer.encode_user_content(user_content, False)

out_tokens, _ = generate(
    [tokens],
    model,
    images=[images],
    max_tokens=256,
    temperature=0.15,
    eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id,
)
result = tokenizer.decode(out_tokens[0])

print("Prompt:", prompt)
print("Completion:", result)
  • Function Calling:
from mistral_common.protocol.instruct.tool_calls import Function, Tool

completion_request = ChatCompletionRequest(
    tools=[
        Tool(
            function=Function(
                name="get_current_weather",
                description="Get the current weather",
                parameters={
                    "type": "object",
                    "properties": {
                        "location": {
                            "type": "string",
                            "description": "The city and state, e.g. San Francisco, CA",
                        },
                        "format": {
                            "type": "string",
                            "enum": ["celsius", "fahrenheit"],
                            "description": "The temperature unit to use. Infer this from the users location.",
                        },
                    },
                    "required": ["location", "format"],
                },
            )
        )
    ],
    messages=[
        UserMessage(content="What's the weather like today in Paris?"),
        ],
)

tokens = tokenizer.encode_chat_completion(completion_request).tokens

out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
result = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0])

print(result)
  • Fill-in-the-middle (FIM):

Make sure to have mistral-common >= 1.2.0 installed:

pip install --upgrade mistral-common

You can simulate a code completion in-filling as follows.

from mistral_inference.transformer import Transformer
from mistral_inference.generate import generate
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.tokens.instruct.request import FIMRequest

tokenizer = MistralTokenizer.from_model("codestral-22b")
model = Transformer.from_folder("./mistral_22b_codestral")

prefix = """def add("""
suffix = """    return sum"""

request = FIMRequest(prompt=prefix, suffix=suffix)

tokens = tokenizer.encode_fim(request).tokens

out_tokens, _ = generate([tokens], model, max_tokens=256, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
result = tokenizer.decode(out_tokens[0])

middle = result.split(suffix)[0].strip()
print(middle)

Test

To run logits equivalence:

python -m pytest tests

Deployment

The deploy folder contains code to build a vLLM image with the required dependencies to serve the Mistral AI model. In the image, the transformers library is used instead of the reference implementation. To build it:

docker build deploy --build-arg MAX_JOBS=8

Instructions to run the image can be found in the official documentation.

Model platforms

References

[1]: LoRA: Low-Rank Adaptation of Large Language Models, Hu et al. 2021

For Tasks:

Click tags to check more tools for each tasks

For Jobs:

Alternative AI tools for mistral-inference

Similar Open Source Tools

For similar tasks

For similar jobs