
star-vector
StarVector is a foundation model for SVG generation that transforms vectorization into a code generation task. Using a vision-language modeling architecture, StarVector processes both visual and textual inputs to produce high-quality SVG code with remarkable precision.
Stars: 118

StarVector is a multimodal vision-language model for Scalable Vector Graphics (SVG) generation. It can be used to perform image2SVG and text2SVG generation. StarVector works directly in the SVG code space, leveraging visual understanding to apply accurate SVG primitives. It achieves state-of-the-art performance in producing compact and semantically rich SVGs. The tool provides Hugging Face model checkpoints for image2SVG vectorization, with models like StarVector-8B and StarVector-1B. It also offers datasets like SVG-Stack, SVG-Fonts, SVG-Icons, SVG-Emoji, and SVG-Diagrams for evaluation. StarVector can be trained using Deepspeed or FSDP for tasks like Image2SVG and Text2SVG generation. The tool provides a demo with options for HuggingFace generation or VLLM backend for faster generation speed.
README:
- March 2025: StarVector Accepted at CVPR 2025,
StarVector is a multimodal vision-language model for Scalable Vector Graphics (SVG) generation. It can be used to perform image2SVG and text2SVG generation. We pose image generation as a code generation task, using the power of multimodal VLMs
Abstract: Scalable Vector Graphics (SVGs) are vital for modern image rendering due to their scalability and versatility. Previous SVG generation methods have focused on curve-based vectorization, lacking semantic understanding, often producing artifacts, and struggling with SVG primitives beyond \textit{path} curves. To address these issues, we introduce StarVector, a multimodal large language model for SVG generation. It performs image vectorization by understanding image semantics and using SVG primitives for compact, precise outputs. Unlike traditional methods, StarVector works directly in the SVG code space, leveraging visual understanding to apply accurate SVG primitives. To train StarVector, we create SVG-Stack, a diverse dataset of 2M samples that enables generalization across vectorization tasks and precise use of primitives like ellipses, polygons, and text. We address challenges in SVG evaluation, showing that pixel-based metrics like MSE fail to capture the unique qualities of vector graphics. We introduce SVG-Bench, a benchmark across 10 datasets, and 3 tasks: Image-to-SVG, Text-to-SVG generation, and diagram generation. Using this setup, StarVector achieves state-of-the-art performance, producing more compact and semantically rich SVGs.
StarVector uses a multimodal architecture to process images and text. When performing Image-to-SVG (or image vectorization), the image is projected into visual tokens, and SVG code is generated. When performing Text-to-SVG, the model only recieves the text instruction (no image is provided), and a novel SVG is created. The LLM is based of StarCoder, which we leverage to transfer coding skills to SVG generation.
- πΏ Installation
- ποΈ Quick Start - Image2SVG Generation
- π¨ Models
- π Datasets
- ποΈββοΈ Training
- π Evaluation on SVG-Bench
- 𧩠Demo
- π Citation
- π License
- Clone this repository and navigate to star-vector folder
git clone https://github.com/joanrod/star-vector.git
cd star-vector
- Install Package
conda create -n starvector python=3.11.3 -y
conda activate starvector
pip install --upgrade pip # enable PEP 660 support
pip install -e .
- Install additional packages for training
pip install -e ".[train]"
git pull
pip install -e .
from PIL import Image
from starvector.model.starvector_arch import StarVectorForCausalLM
from starvector.data.util import process_and_rasterize_svg
model_name = "starvector/starvector-8b-im2svg"
starvector = StarVectorForCausalLM.from_pretrained(model_name)
starvector.cuda()
starvector.eval()
image_pil = Image.open('assets/examples/sample-0.png')
image = starvector.process_images([image_pil])[0].cuda()
batch = {"image": image}
raw_svg = starvector.generate_im2svg(batch, max_length=1000)[0]
svg, raster_image = process_and_rasterize_svg(raw_svg)
from PIL import Image
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor
from starvector.data.util import process_and_rasterize_svg
import torch
model_name = "starvector/starvector-8b-im2svg"
starvector = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, trust_remote_code=True)
processor = starvector.model.processor
tokenizer = starvector.model.svg_transformer.tokenizer
starvector.cuda()
starvector.eval()
image_pil = Image.open('assets/examples/sample-18.png')
image = processor(image_pil, return_tensors="pt")['pixel_values'].cuda()
if not image.shape[0] == 1:
image = image.squeeze(0)
batch = {"image": image}
raw_svg = starvector.generate_im2svg(batch, max_length=4000)[0]
svg, raster_image = process_and_rasterize_svg(raw_svg)
We provide Hugging Face π€ model checkpoints for image2SVG vectorization, for π« StarVector-8B and π« StarVector-1B. These are the results on SVG-Bench, using the DinoScore metric.
Method | SVG-Stack | SVG-Fonts | SVG-Icons | SVG-Emoji | SVG-Diagrams |
---|---|---|---|---|---|
AutoTrace | 0.942 | 0.954 | 0.946 | 0.975 | 0.874 |
Potrace | 0.898 | 0.967 | 0.972 | 0.882 | 0.875 |
VTracer | 0.954 | 0.964 | 0.940 | 0.981 | 0.882 |
Im2Vec | 0.692 | 0.733 | 0.754 | 0.732 | - |
LIVE | 0.934 | 0.956 | 0.959 | 0.969 | 0.870 |
DiffVG | 0.810 | 0.821 | 0.952 | 0.814 | 0.822 |
GPT-4-V | 0.852 | 0.842 | 0.848 | 0.850 | - |
π« StarVector-1B (π€ Link) | 0.926 | 0.978 | 0.975 | 0.929 | 0.943 |
π« StarVector-8B (π€ Link) | 0.966 | 0.982 | 0.984 | 0.981 | 0.959 |
Note: StarVector models will not work for natural images or illustrations, as they have not been trained on those images. They excel in vectorizing icons, logotypes, technical diagrams, graphs, and charts.
SVG-Bench is a benchmark for evaluating SVG generation models. It contains 10 datasets, and 3 tasks: Image-to-SVG, Text-to-SVG, and Diagram-to-SVG.
See our Huggingface π€ Dataset Collection
Dataset | Train | Val | Test | Token Length | SVG Primitives | Annotation |
---|---|---|---|---|---|---|
SVG-Stack (π€ Link) | 2.1M | 108k | 5.7k | 1,822 Β± 1,808 | All | Captions |
SVG-Stack_sim (π€ Link) | 601k | 30.1k | 1.5k | 2k Β± 918 | Vector path | - |
SVG-Diagrams (π€ Link) | - | - | 472 | 3,486 Β± 1,918 | All | - |
SVG-Fonts (π€ Link) | 1.8M | 91.5k | 4.8k | 2,121 Β± 1,868 | Vector path | Font letter |
SVG-Fonts_sim (π€ Link) | 1.4M | 71.7k | 3.7k | 1,722 Β± 723 | Vector path | Font letter |
SVG-Emoji (π€ Link) | 8.7k | 667 | 668 | 2,551 Β± 1,805 | All | - |
SVG-Emoji_sim (π€ Link) | 580 | 57 | 96 | 2,448 Β± 1,026 | Vector Path | - |
SVG-Icons (π€ Link) | 80.4k | 6.2k | 2.4k | 2,449 Β± 1,543 | Vector path | - |
SVG-Icons_sim (π€ Link) | 80,435 | 2,836 | 1,277 | 2,005 Β± 824 | Vector path | - |
SVG-FIGR (π€ Link) | 270k | 27k | 3k | 5,342 Β± 2,345 | Vector path | Class, Caption |
We offer a summary of statistics about the datasets used in our training and evaluation experiments. This datasets are included in SVG-Bench. The subscript sim stands for the simplified version of the dataset, as required by some baselines.
pip install -e ".[train]"
We recommend setting the following environment variables:
export HF_HOME=<path to the folder where you want to store the models>
export HF_TOKEN=<your huggingface token>
export WANDB_API_KEY=<your wandb token>
export OUTPUT_DIR=<path/to/output>
cd the root of the repository.
cd star-vector
We have different training approaches for StarVector-1B and StarVector-8B. StarVector-1B can be trained using Deepspeed, while StarVector-8B requires FSDP.
You can use the following command to train StarVector-1B on SVG-Stack for the Image2SVG vectorization task, using Deepspeed and Accelerate
# StarVector-1B
accelerate launch --config_file configs/accelerate/deepspeed-8-gpu.yaml starvector/train/train.py config=configs/models/starvector-1b/im2svg-stack.yaml
You can use the following command to train StarVector-8B on SVG-Stack for the Image2SVG vectorization task, using FSDP and Accelerate. We provide the torchrun command to support multi-nodes and multi-GPUs.
# StarVector-8B
torchrun \
--nproc-per-node=8 \
--nnodes=1 \
starvector/train/train.py \
config=configs/models/starvector-8b/im2svg-stack.yaml
After pretraining StarVector on image vectorization, we finetune it on additional SVG tasks like Text2SVG, and SVG-Bench datasets.
# StarVector-1B
accelerate launch --config_file config/accelerate/deepspeed-8-gpu.yaml starvector/train/train.py config=configs/models/starvector-1b/text2svg-stack.yaml
# StarVector-8B
torchrun \
--nproc-per-node=8 \
--nnodes=1 \
starvector/train/train.py \
config=configs/models/starvector-8b/text2svg-stack.yaml
# StarVector-1B
accelerate launch --config_file config/accelerate/deepspeed-8-gpu.yaml starvector/train/train.py config=configs/models/starvector-1b/im2svg-{fonts,icons,emoji}.yaml
# StarVector-8B
torchrun \
--nproc-per-node=8 \
--nnodes=1 \
starvector/train/train.py \
config=configs/models/starvector-8b/im2svg-{fonts,icons,emoji}.yaml
We also provide shell scripts in scripts/train/*
We validate StarVector on β SVG-Bench Benchmark. We provide the SVGValidator class that allows you to run StarVector using 1) the HuggingFace generation backend or 2) the VLLM backend. The later is substantially faster thanks to the use of Paged Attention.
Let's start with the evaluation for StarVector-1B and StarVector-8B on SVG-Stack, using the HuggingFace generation backend (StarVectorHFAPIValidator). To override the input arguments, you can add cli args following the yaml file structure.
# StarVector-1B on SVG-Stack, using the HuggingFace backend
python starvector/validation/validate.py \
config=configs/generation/hf/starvector-1b/im2svg.yaml \
dataset.name=starvector/svg-stack
# StarVector-8B on SVG-Stack, using the vanilla HuggingFace generation API
python starvector/validation/validate.py \
config=configs/generation/hf/starvector-8b/im2svg.yaml \
dataset.name=starvector/svg-stack
For using the vLLM backend (StarVectorVLLMAPIValidator), first install our StarVector fork of VLLM, here.
git clone https://github.com/starvector/vllm.git
cd vllm
pip install -e .
Then, launch the using the vllm config file (it uses StarVectorVLLMValidator):
# StarVector-1B
python starvector/validation/validate.py \
config=configs/generation/vllm/starvector-1b/im2svg.yaml \
dataset.name=starvector/svg-stack
# StarVector-8B
python starvector/validation/validate.py \
config=configs/generation/vllm/starvector-8b/im2svg.yaml \
dataset.name=starvector/svg-stack
We provide evaluation scripts in scripts/eval/*
The demo provides two options for converting images to SVG code:
- HuggingFace generation functionality
- VLLM (recommended) - offers faster generation speed
We provide a Gradio web UI for you to play with our model.
python -m starvector.serve.controller --host 0.0.0.0 --port 10000
python -m starvector.serve.gradio_web_server --controller http://localhost:10000 --model-list-mode reload --port 7000
You just launched the Gradio web interface. Now, you can open the web interface with the URL printed on the screen. You may notice that there is no model in the model list. Do not worry, as we have not launched any model worker yet. It will be automatically updated when you launch a model worker.
This is the actual worker that performs the inference on the GPU. Each worker is responsible for a single model specified in --model-path
.
python -m starvector.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path joanrodai/starvector-1.4b
Wait until the process finishes loading the model and you see "Uvicorn running on ...". Now, refresh your Gradio web UI, and you will see the model you just launched in the model list.
You can launch as many workers as you want, and compare between different model checkpoints in the same Gradio interface. Please keep the --controller
the same, and modify the --port
and --worker
to a different port number for each worker.
vllm serve starvector/starvector-8b-im2svg --chat-template configs/chat-template.jinja --trust-remote-code --port 8001 --max-model-len 16000
python -m starvector.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port <different from 40000, say 40001> --worker http://localhost:<change accordingly, i.e. 40001> --model-path <ckpt2>
- Remember to clone the starvector/vllm fork (it has modifications for starvector).
git clone https://github.com/starvector/vllm.git
cd vllm
pip install -e .
- Call this to launch the VLLM endpoint
vllm serve starvector/starvector-1b-im2svg --chat-template configs/chat-template.jinja --trust-remote-code --port 8000 --max-model-len 8192
- Create the demo for VLLM
python -m starvector.serve.vllm_api_gradio.controller --host 0.0.0.0 --port 10000
python -m starvector.serve.vllm_api_gradio.gradio_web_server --controller http://localhost:10000 --model-list-mode reload --port 7000
python -m starvector.serve.vllm_api_gradio.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-name starvector/starvector-1b-im2svg --vllm-base-url http://localhost:8000
- Add more models by serving them with VLLM and calling a new model worker
vllm serve starvector/starvector-8b-im2svg --chat-template configs/chat-template.jinja --trust-remote-code --port 8001 --max-model-len 16384
python -m starvector.serve.vllm_api_gradio.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40001 --worker http://localhost:40001 --model-name starvector/starvector-8b-im2svg --vllm-base-url http://localhost:8001
@misc{rodriguez2024starvector,
title={StarVector: Generating Scalable Vector Graphics Code from Images and Text},
author={Juan A. Rodriguez and Abhay Puri and Shubham Agarwal and Issam H. Laradji and Pau Rodriguez and Sai Rajeswar and David Vazquez and Christopher Pal and Marco Pedersoli},
year={2024},
eprint={2312.11556},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2312.11556},
}
This project is licensed under the Apache License, Version 2.0 - see the LICENSE file for details.
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for star-vector
Similar Open Source Tools

star-vector
StarVector is a multimodal vision-language model for Scalable Vector Graphics (SVG) generation. It can be used to perform image2SVG and text2SVG generation. StarVector works directly in the SVG code space, leveraging visual understanding to apply accurate SVG primitives. It achieves state-of-the-art performance in producing compact and semantically rich SVGs. The tool provides Hugging Face model checkpoints for image2SVG vectorization, with models like StarVector-8B and StarVector-1B. It also offers datasets like SVG-Stack, SVG-Fonts, SVG-Icons, SVG-Emoji, and SVG-Diagrams for evaluation. StarVector can be trained using Deepspeed or FSDP for tasks like Image2SVG and Text2SVG generation. The tool provides a demo with options for HuggingFace generation or VLLM backend for faster generation speed.

polaris
Polaris establishes a novel, industryβcertified standard to foster the development of impactful methods in AI-based drug discovery. This library is a Python client to interact with the Polaris Hub. It allows you to download Polaris datasets and benchmarks, evaluate a custom method against a Polaris benchmark, and create and upload new datasets and benchmarks.

rank_llm
RankLLM is a suite of prompt-decoders compatible with open source LLMs like Vicuna and Zephyr. It allows users to create custom ranking models for various NLP tasks, such as document reranking, question answering, and summarization. The tool offers a variety of features, including the ability to fine-tune models on custom datasets, use different retrieval methods, and control the context size and variable passages. RankLLM is easy to use and can be integrated into existing NLP pipelines.

Consistency_LLM
Consistency Large Language Models (CLLMs) is a family of efficient parallel decoders that reduce inference latency by efficiently decoding multiple tokens in parallel. The models are trained to perform efficient Jacobi decoding, mapping any randomly initialized token sequence to the same result as auto-regressive decoding in as few steps as possible. CLLMs have shown significant improvements in generation speed on various tasks, achieving up to 3.4 times faster generation. The tool provides a seamless integration with other techniques for efficient Large Language Model (LLM) inference, without the need for draft models or architectural modifications.

MaskLLM
MaskLLM is a learnable pruning method that establishes Semi-structured Sparsity in Large Language Models (LLMs) to reduce computational overhead during inference. It is scalable and benefits from larger training datasets. The tool provides examples for running MaskLLM with Megatron-LM, preparing LLaMA checkpoints, pre-tokenizing C4 data for Megatron, generating prior masks, training MaskLLM, and evaluating the model. It also includes instructions for exporting sparse models to Huggingface.

AiOS
AiOS is a tool for human pose and shape estimation, performing human localization and SMPL-X estimation in a progressive manner. It consists of body localization, body refinement, and whole-body refinement stages. Users can download datasets for evaluation, SMPL-X body models, and AiOS checkpoint. Installation involves creating a conda virtual environment, installing PyTorch, torchvision, Pytorch3D, MMCV, and other dependencies. Inference requires placing the video for inference and pretrained models in specific directories. Test results are provided for NMVE, NMJE, MVE, and MPJPE on datasets like BEDLAM and AGORA. Users can run scripts for AGORA validation, AGORA test leaderboard, and BEDLAM leaderboard. The tool acknowledges codes from MMHuman3D, ED-Pose, and SMPLer-X.

TinyLLM
TinyLLM is a project that helps build a small locally hosted language model with a web interface using consumer-grade hardware. It supports multiple language models, builds a local OpenAI API web service, and serves a Chatbot web interface with customizable prompts. The project requires specific hardware and software configurations for optimal performance. Users can run a local language model using inference servers like vLLM, llama-cpp-python, and Ollama. The Chatbot feature allows users to interact with the language model through a web-based interface, supporting features like summarizing websites, displaying news headlines, stock prices, weather conditions, and using vector databases for queries.

FalkorDB
FalkorDB is the first queryable Property Graph database to use sparse matrices to represent the adjacency matrix in graphs and linear algebra to query the graph. Primary features: * Adopting the Property Graph Model * Nodes (vertices) and Relationships (edges) that may have attributes * Nodes can have multiple labels * Relationships have a relationship type * Graphs represented as sparse adjacency matrices * OpenCypher with proprietary extensions as a query language * Queries are translated into linear algebra expressions

MooER
MooER (ζ©θ³) is an LLM-based speech recognition and translation model developed by Moore Threads. It allows users to transcribe speech into text (ASR) and translate speech into other languages (AST) in an end-to-end manner. The model was trained using 5K hours of data and is now also available with an 80K hours version. MooER is the first LLM-based speech model trained and inferred using domestic GPUs. The repository includes pretrained models, inference code, and a Gradio demo for a better user experience.

aichat
Aichat is an AI-powered CLI chat and copilot tool that seamlessly integrates with over 10 leading AI platforms, providing a powerful combination of chat-based interaction, context-aware conversations, and AI-assisted shell capabilities, all within a customizable and user-friendly environment.

pixeltable
Pixeltable is a Python library designed for ML Engineers and Data Scientists to focus on exploration, modeling, and app development without the need to handle data plumbing. It provides a declarative interface for working with text, images, embeddings, and video, enabling users to store, transform, index, and iterate on data within a single table interface. Pixeltable is persistent, acting as a database unlike in-memory Python libraries such as Pandas. It offers features like data storage and versioning, combined data and model lineage, indexing, orchestration of multimodal workloads, incremental updates, and automatic production-ready code generation. The tool emphasizes transparency, reproducibility, cost-saving through incremental data changes, and seamless integration with existing Python code and libraries.

ms-swift
ms-swift is an official framework provided by the ModelScope community for fine-tuning and deploying large language models and multi-modal large models. It supports training, inference, evaluation, quantization, and deployment of over 400 large models and 100+ multi-modal large models. The framework includes various training technologies and accelerates inference, evaluation, and deployment modules. It offers a Gradio-based Web-UI interface and best practices for easy application of large models. ms-swift supports a wide range of model types, dataset types, hardware support, lightweight training methods, distributed training techniques, quantization training, RLHF training, multi-modal training, interface training, plugin and extension support, inference acceleration engines, model evaluation, and model quantization.

agentscope
AgentScope is a multi-agent platform designed to empower developers to build multi-agent applications with large-scale models. It features three high-level capabilities: Easy-to-Use, High Robustness, and Actor-Based Distribution. AgentScope provides a list of `ModelWrapper` to support both local model services and third-party model APIs, including OpenAI API, DashScope API, Gemini API, and ollama. It also enables developers to rapidly deploy local model services using libraries such as ollama (CPU inference), Flask + Transformers, Flask + ModelScope, FastChat, and vllm. AgentScope supports various services, including Web Search, Data Query, Retrieval, Code Execution, File Operation, and Text Processing. Example applications include Conversation, Game, and Distribution. AgentScope is released under Apache License 2.0 and welcomes contributions.

pipeline
Pipeline is a Python library designed for constructing computational flows for AI/ML models. It supports both development and production environments, offering capabilities for inference, training, and finetuning. The library serves as an interface to Mystic, enabling the execution of pipelines at scale and on enterprise GPUs. Users can also utilize this SDK with Pipeline Core on a private hosted cluster. The syntax for defining AI/ML pipelines is reminiscent of sessions in Tensorflow v1 and Flows in Prefect.

AutoGPTQ
AutoGPTQ is an easy-to-use LLM quantization package with user-friendly APIs, based on GPTQ algorithm (weight-only quantization). It provides a simple and efficient way to quantize large language models (LLMs) to reduce their size and computational cost while maintaining their performance. AutoGPTQ supports a wide range of LLM models, including GPT-2, GPT-J, OPT, and BLOOM. It also supports various evaluation tasks, such as language modeling, sequence classification, and text summarization. With AutoGPTQ, users can easily quantize their LLM models and deploy them on resource-constrained devices, such as mobile phones and embedded systems.
For similar tasks

star-vector
StarVector is a multimodal vision-language model for Scalable Vector Graphics (SVG) generation. It can be used to perform image2SVG and text2SVG generation. StarVector works directly in the SVG code space, leveraging visual understanding to apply accurate SVG primitives. It achieves state-of-the-art performance in producing compact and semantically rich SVGs. The tool provides Hugging Face model checkpoints for image2SVG vectorization, with models like StarVector-8B and StarVector-1B. It also offers datasets like SVG-Stack, SVG-Fonts, SVG-Icons, SVG-Emoji, and SVG-Diagrams for evaluation. StarVector can be trained using Deepspeed or FSDP for tasks like Image2SVG and Text2SVG generation. The tool provides a demo with options for HuggingFace generation or VLLM backend for faster generation speed.
For similar jobs

weave
Weave is a toolkit for developing Generative AI applications, built by Weights & Biases. With Weave, you can log and debug language model inputs, outputs, and traces; build rigorous, apples-to-apples evaluations for language model use cases; and organize all the information generated across the LLM workflow, from experimentation to evaluations to production. Weave aims to bring rigor, best-practices, and composability to the inherently experimental process of developing Generative AI software, without introducing cognitive overhead.

LLMStack
LLMStack is a no-code platform for building generative AI agents, workflows, and chatbots. It allows users to connect their own data, internal tools, and GPT-powered models without any coding experience. LLMStack can be deployed to the cloud or on-premise and can be accessed via HTTP API or triggered from Slack or Discord.

VisionCraft
The VisionCraft API is a free API for using over 100 different AI models. From images to sound.

kaito
Kaito is an operator that automates the AI/ML inference model deployment in a Kubernetes cluster. It manages large model files using container images, avoids tuning deployment parameters to fit GPU hardware by providing preset configurations, auto-provisions GPU nodes based on model requirements, and hosts large model images in the public Microsoft Container Registry (MCR) if the license allows. Using Kaito, the workflow of onboarding large AI inference models in Kubernetes is largely simplified.

PyRIT
PyRIT is an open access automation framework designed to empower security professionals and ML engineers to red team foundation models and their applications. It automates AI Red Teaming tasks to allow operators to focus on more complicated and time-consuming tasks and can also identify security harms such as misuse (e.g., malware generation, jailbreaking), and privacy harms (e.g., identity theft). The goal is to allow researchers to have a baseline of how well their model and entire inference pipeline is doing against different harm categories and to be able to compare that baseline to future iterations of their model. This allows them to have empirical data on how well their model is doing today, and detect any degradation of performance based on future improvements.

tabby
Tabby is a self-hosted AI coding assistant, offering an open-source and on-premises alternative to GitHub Copilot. It boasts several key features: * Self-contained, with no need for a DBMS or cloud service. * OpenAPI interface, easy to integrate with existing infrastructure (e.g Cloud IDE). * Supports consumer-grade GPUs.

spear
SPEAR (Simulator for Photorealistic Embodied AI Research) is a powerful tool for training embodied agents. It features 300 unique virtual indoor environments with 2,566 unique rooms and 17,234 unique objects that can be manipulated individually. Each environment is designed by a professional artist and features detailed geometry, photorealistic materials, and a unique floor plan and object layout. SPEAR is implemented as Unreal Engine assets and provides an OpenAI Gym interface for interacting with the environments via Python.

Magick
Magick is a groundbreaking visual AIDE (Artificial Intelligence Development Environment) for no-code data pipelines and multimodal agents. Magick can connect to other services and comes with nodes and templates well-suited for intelligent agents, chatbots, complex reasoning systems and realistic characters.