
meeting-minutes
A free and open source, self hosted Ai based live meeting note taker and minutes summary generator that can completely run in your Local device (Mac OS and windows OS Support added. Working on adding linux support soon)
Stars: 1040

An open-source AI assistant for taking meeting notes that captures live meeting audio, transcribes it in real-time, and generates summaries while ensuring user privacy. Perfect for teams to focus on discussions while automatically capturing and organizing meeting content without external servers or complex infrastructure. Features include modern UI, real-time audio capture, speaker diarization, local processing for privacy, and more. The tool also offers a Rust-based implementation for better performance and native integration, with features like live transcription, speaker diarization, and a rich text editor for notes. Future plans include database connection for saving meeting minutes, improving summarization quality, and adding download options for meeting transcriptions and summaries. The backend supports multiple LLM providers through a unified interface, with configurations for Anthropic, Groq, and Ollama models. System architecture includes core components like audio capture service, transcription engine, LLM orchestrator, data services, and API layer. Prerequisites for setup include Node.js, Python, FFmpeg, and Rust. Development guidelines emphasize project structure, testing, documentation, type hints, and ESLint configuration. Contributions are welcome under the MIT License.
README:
Website • Author • Discord Channel
An AI-Powered Meeting Assistant that captures live meeting audio, transcribes it in real-time, and generates summaries while ensuring user privacy. Perfect for teams who want to focus on discussions while automatically capturing and organizing meeting content without the need for external servers or complex infrastructure.
An AI-powered meeting assistant that captures live meeting audio, transcribes it in real-time, and generates summaries while ensuring user privacy. Perfect for teams who want to focus on discussions while automatically capturing and organizing meeting content.
While there are many meeting transcription tools available, this solution stands out by offering:
- Privacy First: All processing happens locally on your device
- Cost Effective: Uses open-source AI models instead of expensive APIs
- Flexible: Works offline, supports multiple meeting platforms
- Customizable: Self-host and modify for your specific needs
- Intelligent: Built-in knowledge graph for semantic search across meetings
✅ Modern, responsive UI with real-time updates
✅ Real-time audio capture (microphone + system audio)
✅ Live transcription using Whisper.cpp
🚧 Speaker diarization
✅ Local processing for privacy
✅ Packaged the app for macOS and Windows
🚧 Export to Markdown/PDF
Note: We have a Rust-based implementation that explores better performance and native integration. It currently implements:
- ✅ Real-time audio capture from both microphone and system audio
- ✅ Live transcription using locally-running Whisper
- ✅ Speaker diarization
- ✅ Rich text editor for notes
We are currently working on:
- ✅ Export to Markdown/PDF
- ✅ Export to HTML
A new release is available!
Please check out the release here.
- Windows Support: Fixed audio capture issues on Windows
- Improved Error Handling: Better error handling and logging for audio devices
- Enhanced Device Detection: More robust audio device detection across platforms
- Windows Installers: Added both .exe and .msi installers for Windows
- Transcription quality is improved
- Bug fixes and improvements for frontend
- Better backend app build process
- Improved documentation
- Database connection to save meeting minutes
- Improve summarization quality for smaller LLM models
- Add download options for meeting transcriptions
- Add download option for summary
- Smaller LLMs can hallucinate, making summarization quality poor; Please use model above 32B parameter size
- Backend build process requires CMake, C++ compiler, etc. Making it harder to build
- Backend build process requires Python 3.10 or newer
- Frontend build process requires Node.js
The backend supports multiple LLM providers through a unified interface. Current implementations include:
- Anthropic (Claude models)
- Groq (Llama3.2 90 B)
- Ollama (Local models that supports function calling)
Create .env
file with your API keys:
# Required for Anthropic
ANTHROPIC_API_KEY=your_key_here
# Required for Groq
GROQ_API_KEY=your_key_here
-
Audio Capture Service
- Real-time microphone/system audio capture
- Audio preprocessing pipeline
- Built with Rust (experimental) and Python
-
Transcription Engine
- Whisper.cpp for local transcription
- Supports multiple model sizes (tiny->large)
- GPU-accelerated processing
-
LLM Orchestrator
- Unified interface for multiple providers
- Automatic fallback handling
- Chunk processing with overlap
- Model configuration:
-
Data Services
- ChromaDB: Vector store for transcript embeddings
- SQLite: Process tracking and metadata storage
-
API Layer
- FastAPI endpoints:
- POST /upload
- POST /process
- GET /summary/{id}
- DELETE /summary/{id}
- FastAPI endpoints:
- Frontend: Tauri app + Next.js (packaged executables)
-
Backend: Python FastAPI:
- Transcript workers
- LLM inference
- Node.js 18+
- Python 3.10+
- FFmpeg
- Rust 1.65+ (for experimental features)
- Cmake 3.22+ (for building the frontend)
- For Windows: Visual Studio Build Tools with C++ development workload
Go to the releases page and download the latest version.
For Windows:
- Download either the
.exe
installer or.msi
package - Once the installer is downloaded, double-click the executable file to run it
- Windows will ask if you want to run untrusted apps, click "More info" and choose "Run anyway"
- Follow the installation wizard to complete the setup
- The application will be installed and available on your desktop
For macOS:
- Download the
dmg_darwin_arch64.zip
file - Extract the file
- Double-click the
.dmg
file inside the extracted folder - Drag the application to your Applications folder
- Execute the following command in terminal to remove the quarantine attribute:
xattr -c /Applications/meeting-minutes-frontend.app
Provide necessary permissions for audio capture and microphone access.
# Navigate to frontend directory
cd frontend
# Give execute permissions to clean_build.sh
chmod +x clean_build.sh
# run clean_build.sh
./clean_build.sh
# Clone the repository
git clone https://github.com/Zackriya-Solutions/meeting-minutes.git
cd meeting-minutes/backend
# Create and activate virtual environment
# On macOS/Linux:
python -m venv venv
source venv/bin/activate
# On Windows:
python -m venv venv
.\venv\Scripts\activate
# Install dependencies
pip install -r requirements.txt
# Add environment file with API keys
# On macOS/Linux:
echo -e "ANTHROPIC_API_KEY=your_api_key\nGROQ_API_KEY=your_api_key" | tee .env
# On Windows (PowerShell):
"ANTHROPIC_API_KEY=your_api_key`nGROQ_API_KEY=your_api_key" | Out-File -FilePath .env -Encoding utf8
# Configure environment variables for Groq
# On macOS/Linux:
export GROQ_API_KEY=your_groq_api_key
# On Windows (PowerShell):
$env:GROQ_API_KEY="your_groq_api_key"
# Build dependencies
# On macOS/Linux:
chmod +x build_whisper.sh
./build_whisper.sh
# On Windows:
.\build_whisper.bat
# Start backend servers
# On macOS/Linux:
./clean_start_backend.sh
# On Windows:
.\start_with_output.ps1
- Follow the established project structure
- Write tests for new features
- Document API changes
- Use type hints in Python code
- Follow ESLint configuration for JavaScript/TypeScript
- Fork the repository
- Create a feature branch
- Submit a pull request
MIT License - Feel free to use this project for your own purposes.
We are planning to add a subscription option so that you don't have to run the backend on your own server. This will help you scale better and run the service 24/7. This is based on a few requests we received. If you are interested, please fill out the form here.
Last updated: March 3, 2025
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for meeting-minutes
Similar Open Source Tools

meeting-minutes
An open-source AI assistant for taking meeting notes that captures live meeting audio, transcribes it in real-time, and generates summaries while ensuring user privacy. Perfect for teams to focus on discussions while automatically capturing and organizing meeting content without external servers or complex infrastructure. Features include modern UI, real-time audio capture, speaker diarization, local processing for privacy, and more. The tool also offers a Rust-based implementation for better performance and native integration, with features like live transcription, speaker diarization, and a rich text editor for notes. Future plans include database connection for saving meeting minutes, improving summarization quality, and adding download options for meeting transcriptions and summaries. The backend supports multiple LLM providers through a unified interface, with configurations for Anthropic, Groq, and Ollama models. System architecture includes core components like audio capture service, transcription engine, LLM orchestrator, data services, and API layer. Prerequisites for setup include Node.js, Python, FFmpeg, and Rust. Development guidelines emphasize project structure, testing, documentation, type hints, and ESLint configuration. Contributions are welcome under the MIT License.

gateway
CentralMind Gateway is an AI-first data gateway that securely connects any data source and automatically generates secure, LLM-optimized APIs. It filters out sensitive data, adds traceability, and optimizes for AI workloads. Suitable for companies deploying AI agents for customer support and analytics.

R2R
R2R (RAG to Riches) is a fast and efficient framework for serving high-quality Retrieval-Augmented Generation (RAG) to end users. The framework is designed with customizable pipelines and a feature-rich FastAPI implementation, enabling developers to quickly deploy and scale RAG-based applications. R2R was conceived to bridge the gap between local LLM experimentation and scalable production solutions. **R2R is to LangChain/LlamaIndex what NextJS is to React**. A JavaScript client for R2R deployments can be found here. ### Key Features * **🚀 Deploy** : Instantly launch production-ready RAG pipelines with streaming capabilities. * **🧩 Customize** : Tailor your pipeline with intuitive configuration files. * **🔌 Extend** : Enhance your pipeline with custom code integrations. * **⚖️ Autoscale** : Scale your pipeline effortlessly in the cloud using SciPhi. * **🤖 OSS** : Benefit from a framework developed by the open-source community, designed to simplify RAG deployment.

aiaio
aiaio (AI-AI-O) is a lightweight, privacy-focused web UI for interacting with AI models. It supports both local and remote LLM deployments through OpenAI-compatible APIs. The tool provides features such as dark/light mode support, local SQLite database for conversation storage, file upload and processing, configurable model parameters through UI, privacy-focused design, responsive design for mobile/desktop, syntax highlighting for code blocks, real-time conversation updates, automatic conversation summarization, customizable system prompts, WebSocket support for real-time updates, Docker support for deployment, multiple API endpoint support, and multiple system prompt support. Users can configure model parameters and API settings through the UI, handle file uploads, manage conversations, and use keyboard shortcuts for efficient interaction. The tool uses SQLite for storage with tables for conversations, messages, attachments, and settings. Contributions to the project are welcome under the Apache License 2.0.

aibrix
AIBrix is an open-source initiative providing essential building blocks for scalable GenAI inference infrastructure. It delivers a cloud-native solution optimized for deploying, managing, and scaling large language model (LLM) inference, tailored to enterprise needs. Key features include High-Density LoRA Management, LLM Gateway and Routing, LLM App-Tailored Autoscaler, Unified AI Runtime, Distributed Inference, Distributed KV Cache, Cost-efficient Heterogeneous Serving, and GPU Hardware Failure Detection.

SynthLang
SynthLang is a tool designed to optimize AI prompts by reducing costs and improving processing speed. It brings academic rigor to prompt engineering, creating precise and powerful AI interactions. The tool includes core components like a Translator Engine, Performance Optimization, Testing Framework, and Technical Architecture. It offers mathematical precision, academic rigor, enhanced security, a modern interface, and instant testing. Users can integrate mathematical frameworks, model complex relationships, and apply structured prompts to various domains. Security features include API key management and data privacy. The tool also provides a CLI for prompt engineering and optimization capabilities.

morphic
Morphic is an AI-powered answer engine with a generative UI. It utilizes a stack of Next.js, Vercel AI SDK, OpenAI, Tavily AI, shadcn/ui, Radix UI, and Tailwind CSS. To get started, fork and clone the repo, install dependencies, fill out secrets in the .env.local file, and run the app locally using 'bun dev'. You can also deploy your own live version of Morphic with Vercel. Verified models that can be specified to writers include Groq, LLaMA3 8b, and LLaMA3 70b.

replexica
Replexica is an i18n toolkit for React, to ship multi-language apps fast. It doesn't require extracting text into JSON files, and uses AI-powered API for content processing. It comes in two parts: 1. Replexica Compiler - an open-source compiler plugin for React; 2. Replexica API - an i18n API in the cloud that performs translations using LLMs. (Usage based, has a free tier.) Replexica supports several i18n formats: 1. JSON-free Replexica compiler format; 2. .md files for Markdown content; 3. Legacy JSON and YAML-based formats.

paperless-ai
Paperless-AI is an automated document analyzer tool designed for Paperless-ngx users. It utilizes the OpenAI API and Ollama (Mistral, llama, phi 3, gemma 2) to automatically scan, analyze, and tag documents. The tool offers features such as automatic document scanning, AI-powered document analysis, automatic title and tag assignment, manual mode for analyzing documents, easy setup through a web interface, document processing dashboard, error handling, and Docker support. Users can configure the tool through a web interface and access a debug interface for monitoring and troubleshooting. Paperless-AI aims to streamline document organization and analysis processes for users with access to Paperless-ngx and AI capabilities.

CrewAI-Studio
CrewAI Studio is an application with a user-friendly interface for interacting with CrewAI, offering support for multiple platforms and various backend providers. It allows users to run crews in the background, export single-page apps, and use custom tools for APIs and file writing. The roadmap includes features like better import/export, human input, chat functionality, automatic crew creation, and multiuser environment support.

trendFinder
Trend Finder is a tool designed to help users stay updated on trending topics on social media by collecting and analyzing posts from key influencers. It sends Slack notifications when new trends or product launches are detected, saving time, keeping users informed, and enabling quick responses to emerging opportunities. The tool features AI-powered trend analysis, social media and website monitoring, instant Slack notifications, and scheduled monitoring using cron jobs. Built with Node.js and Express.js, Trend Finder integrates with Together AI, Twitter/X API, Firecrawl, and Slack Webhooks for notifications.

DeepSeekAI
DeepSeekAI is a browser extension plugin that allows users to interact with AI by selecting text on web pages and invoking the DeepSeek large model to provide AI responses. The extension enhances browsing experience by enabling users to get summaries or answers for selected text directly on the webpage. It features context text selection, API key integration, draggable and resizable window, AI streaming replies, Markdown rendering, one-click copy, re-answer option, code copy functionality, language switching, and multi-turn dialogue support. Users can install the extension from Chrome Web Store or Edge Add-ons, or manually clone the repository, install dependencies, and build the extension. Configuration involves entering the DeepSeek API key in the extension popup window to start using the AI-driven responses.

Easy-Voice-Toolkit
Easy Voice Toolkit is a toolkit based on open source voice projects, providing automated audio tools including speech model training. Users can seamlessly integrate functions like audio processing, voice recognition, voice transcription, dataset creation, model training, and voice conversion to transform raw audio files into ideal speech models. The toolkit supports multiple languages and is currently only compatible with Windows systems. It acknowledges the contributions of various projects and offers local deployment options for both users and developers. Additionally, cloud deployment on Google Colab is available. The toolkit has been tested on Windows OS devices and includes a FAQ section and terms of use for academic exchange purposes.

CortexON
CortexON is an open-source, multi-agent AI system designed to automate and simplify everyday tasks. It integrates specialized agents like Web Agent, File Agent, Coder Agent, Executor Agent, and API Agent to accomplish user-defined objectives. CortexON excels at executing complex workflows, research tasks, technical operations, and business process automations by dynamically coordinating the agents' unique capabilities. It offers advanced research automation, multi-agent orchestration, integration with third-party APIs, code generation and execution, efficient file and data management, and personalized task execution for travel planning, market analysis, educational content creation, and business intelligence.

eole
EOLE is an open language modeling toolkit based on PyTorch. It aims to provide a research-friendly approach with a comprehensive yet compact and modular codebase for experimenting with various types of language models. The toolkit includes features such as versatile training and inference, dynamic data transforms, comprehensive large language model support, advanced quantization, efficient finetuning, flexible inference, and tensor parallelism. EOLE is a work in progress with ongoing enhancements in configuration management, command line entry points, reproducible recipes, core API simplification, and plans for further simplification, refactoring, inference server development, additional recipes, documentation enhancement, test coverage improvement, logging enhancements, and broader model support.

word-GPT-Plus
Word GPT Plus seamlessly integrates AI models into Microsoft Word, allowing users to generate, translate, summarize, and polish text directly within their documents. The tool supports multiple AI models, offers built-in templates for various text-related tasks, and provides customization options for user preferences. Users can install the tool through a hosted service, Docker deployment, or self-hosting, and can easily fill in API keys to access different AI services. Word GPT Plus enhances writing workflows by providing AI-powered assistance without leaving the Word environment.
For similar tasks

meeting-minutes
An open-source AI assistant for taking meeting notes that captures live meeting audio, transcribes it in real-time, and generates summaries while ensuring user privacy. Perfect for teams to focus on discussions while automatically capturing and organizing meeting content without external servers or complex infrastructure. Features include modern UI, real-time audio capture, speaker diarization, local processing for privacy, and more. The tool also offers a Rust-based implementation for better performance and native integration, with features like live transcription, speaker diarization, and a rich text editor for notes. Future plans include database connection for saving meeting minutes, improving summarization quality, and adding download options for meeting transcriptions and summaries. The backend supports multiple LLM providers through a unified interface, with configurations for Anthropic, Groq, and Ollama models. System architecture includes core components like audio capture service, transcription engine, LLM orchestrator, data services, and API layer. Prerequisites for setup include Node.js, Python, FFmpeg, and Rust. Development guidelines emphasize project structure, testing, documentation, type hints, and ESLint configuration. Contributions are welcome under the MIT License.

amurex
Amurex is a powerful AI meeting assistant that integrates seamlessly into your workflow. It ensures you never miss details, stay on top of action items, and make meetings more productive. With real-time suggestions, smart summaries, and follow-up emails, Amurex acts as your personal copilot. It is open-source, transparent, secure, and privacy-focused, providing a seamless AI-driven experience to take control of your meetings and focus on what truly matters.
For similar jobs

amurex
Amurex is a powerful AI meeting assistant that integrates seamlessly into your workflow. It ensures you never miss details, stay on top of action items, and make meetings more productive. With real-time suggestions, smart summaries, and follow-up emails, Amurex acts as your personal copilot. It is open-source, transparent, secure, and privacy-focused, providing a seamless AI-driven experience to take control of your meetings and focus on what truly matters.

meeting-minutes
An open-source AI assistant for taking meeting notes that captures live meeting audio, transcribes it in real-time, and generates summaries while ensuring user privacy. Perfect for teams to focus on discussions while automatically capturing and organizing meeting content without external servers or complex infrastructure. Features include modern UI, real-time audio capture, speaker diarization, local processing for privacy, and more. The tool also offers a Rust-based implementation for better performance and native integration, with features like live transcription, speaker diarization, and a rich text editor for notes. Future plans include database connection for saving meeting minutes, improving summarization quality, and adding download options for meeting transcriptions and summaries. The backend supports multiple LLM providers through a unified interface, with configurations for Anthropic, Groq, and Ollama models. System architecture includes core components like audio capture service, transcription engine, LLM orchestrator, data services, and API layer. Prerequisites for setup include Node.js, Python, FFmpeg, and Rust. Development guidelines emphasize project structure, testing, documentation, type hints, and ESLint configuration. Contributions are welcome under the MIT License.

Omi
Omi is an open-source AI wearable that transforms the way conversations are captured and managed. By connecting Omi to your mobile device, you can effortlessly obtain high-quality transcriptions of meetings, chats, and voice memos on the go.

omi
Omi is an open-source AI wearable that provides automatic, high-quality transcriptions of meetings, chats, and voice memos. It revolutionizes how conversations are captured and managed by connecting to mobile devices. The tool offers features for seamless documentation and integration with third-party services.

Azure-Analytics-and-AI-Engagement
The Azure-Analytics-and-AI-Engagement repository provides packaged Industry Scenario DREAM Demos with ARM templates (Containing a demo web application, Power BI reports, Synapse resources, AML Notebooks etc.) that can be deployed in a customer’s subscription using the CAPE tool within a matter of few hours. Partners can also deploy DREAM Demos in their own subscriptions using DPoC.

quivr
Quivr is a personal assistant powered by Generative AI, designed to be a second brain for users. It offers fast and efficient access to data, ensuring security and compatibility with various file formats. Quivr is open source and free to use, allowing users to share their brains publicly or keep them private. The marketplace feature enables users to share and utilize brains created by others, boosting productivity. Quivr's offline mode provides anytime, anywhere access to data. Key features include speed, security, OS compatibility, file compatibility, open source nature, public/private sharing options, a marketplace, and offline mode.

Avalonia-Assistant
Avalonia-Assistant is an open-source desktop intelligent assistant that aims to provide a user-friendly interactive experience based on the Avalonia UI framework and the integration of Semantic Kernel with OpenAI or other large LLM models. By utilizing Avalonia-Assistant, you can perform various desktop operations through text or voice commands, enhancing your productivity and daily office experience.

MetaGPT
MetaGPT is a multi-agent framework that enables GPT to work in a software company, collaborating to tackle more complex tasks. It assigns different roles to GPTs to form a collaborative entity for complex tasks. MetaGPT takes a one-line requirement as input and outputs user stories, competitive analysis, requirements, data structures, APIs, documents, etc. Internally, MetaGPT includes product managers, architects, project managers, and engineers. It provides the entire process of a software company along with carefully orchestrated SOPs. MetaGPT's core philosophy is "Code = SOP(Team)", materializing SOP and applying it to teams composed of LLMs.