MindSearch

MindSearch

🔍 An LLM-based Multi-agent Framework of Web Search Engine (like Perplexity.ai Pro and SearchGPT)

Stars: 4819

Visit
 screenshot

MindSearch is an open-source AI Search Engine Framework that mimics human minds to provide deep AI search capabilities. It allows users to deploy their own search engine using either close-source or open-source language models. MindSearch offers features such as answering any question using web knowledge, in-depth knowledge discovery, detailed solution paths, optimized UI experience, and dynamic graph construction process.

README:

🌐 Project Page | 📃 Paper | 🤗 Hugging Face Space| đŸ’ģ ModelScope

English | įŽ€äŊ“中文

https://github.com/user-attachments/assets/44ffe4b9-be26-4b93-a77b-02fed16e33fe

✨ MindSearch: Mimicking Human Minds Elicits Deep AI Searcher

âšŊī¸ Build Your Own MindSearch

Step1: Dependencies Installation

git clone https://github.com/InternLM/MindSearch
cd MindSearch
pip install -r requirements.txt

Step2: Setup Environment Variables

Before setting up the API, you need to configure environment variables. Rename the .env.example file to .env and fill in the required values.

mv .env.example .env
# Open .env and add your keys and model configurations

Step3: Setup MindSearch API

Setup FastAPI Server.

python -m mindsearch.app --lang en --model_format internlm_server --search_engine DuckDuckGoSearch
  • --lang: language of the model, en for English and cn for Chinese.

  • --model_format: format of the model.

    • internlm_server for InternLM2.5-7b-chat with local server. (InternLM2.5-7b-chat has been better optimized for Chinese.)
    • gpt4 for GPT4. if you want to use other models, please modify models
  • --search_engine: Search engine.

    • DuckDuckGoSearch for search engine for DuckDuckGo.
    • BingSearch for Bing search engine.
    • BraveSearch for Brave search web api engine.
    • GoogleSearch for Google Serper web search api engine.

    Please set your Web Search engine API key as the WEB_SEARCH_API_KEY environment variable unless you are using DuckDuckGo.

Step4: Setup MindSearch Frontend

Providing following frontend interfaces,

  • React
# Install Node.js and npm
# for Ubuntu
sudo apt install nodejs npm

# for windows
# download from https://nodejs.org/zh-cn/download/prebuilt-installer

# Install dependencies

cd frontend/React
npm install
npm start

Details can be found in React

  • Gradio
python frontend/mindsearch_gradio.py
  • Streamlit
streamlit run frontend/mindsearch_streamlit.py

🌐 Change Web Search API

To use a different type of web search API, modify the searcher_type attribute in the searcher_cfg located in mindsearch/agent/__init__.py. Currently supported web search APIs include:

  • GoogleSearch
  • DuckDuckGoSearch
  • BraveSearch
  • BingSearch

For example, to change to the Brave Search API, you would configure it as follows:

BingBrowser(
    searcher_type='BraveSearch',
    topk=2,
    api_key=os.environ.get('BRAVE_API_KEY', 'YOUR BRAVE API')
)

🐞 Using the Backend Without Frontend

For users who prefer to interact with the backend directly, use the backend_example.py script. This script demonstrates how to send a query to the backend and process the response.

python backend_example.py

Make sure you have set up the environment variables and the backend is running before executing the script.

🐞 Debug Locally

python -m mindsearch.terminal

📝 License

This project is released under the Apache 2.0 license.

Citation

If you find this project useful in your research, please consider cite:

@article{chen2024mindsearch,
  title={MindSearch: Mimicking Human Minds Elicits Deep AI Searcher},
  author={Chen, Zehui and Liu, Kuikun and Wang, Qiuchen and Liu, Jiangning and Zhang, Wenwei and Chen, Kai and Zhao, Feng},
  journal={arXiv preprint arXiv:2407.20183},
  year={2024}
}

Our Projects

Explore our additional research on large language models, focusing on LLM agents.

  • Lagent: A lightweight framework for building LLM-based agents
  • AgentFLAN: An innovative approach for constructing and training with high-quality agent datasets (ACL 2024 Findings)
  • T-Eval: A Fine-grained tool utilization evaluation benchmark (ACL 2024)

For Tasks:

Click tags to check more tools for each tasks

For Jobs:

Alternative AI tools for MindSearch

Similar Open Source Tools

For similar tasks

For similar jobs