cheating-based-prompt-engine

cheating-based-prompt-engine

AI engine for smart contract audit

Stars: 185

Visit
 screenshot

This is a vulnerability mining engine purely based on GPT, requiring no prior knowledge base, no fine-tuning, yet its effectiveness can overwhelmingly surpass most of the current related research. The core idea revolves around being task-driven, not question-driven, driven by prompts, not by code, and focused on prompt design, not model design. The essence is encapsulated in one word: deception. It is a type of code understanding logic vulnerability mining that fully stimulates the capabilities of GPT, suitable for real actual projects.

README:

Recently Updated

2024.04.29:

  1. Add function to basiclly support rust language.

2024.05.16:

  1. Add support for cross-contract vulnerability confirmation, reduce the false positive rate approximately 50%.
  2. upadte the structure of the db
  3. add CN explaination

2024.05.18:

  1. Add prompt for check if result of vulnerability has assumations, reduce the false positive rate approximately 20%.

2024.06.01:

  1. Add support for python language, dont ask me why, so annoying.

2024.07.01

  1. Update the license

2024.07.23

  1. Add support for cairo, move

2024.08.01

  1. Add support for func, tact

2024.08.02 Inspired by the paper https://arxiv.org/abs/2407.21787v1, the project was renamed to finite-money-prompt-engine on August 2, 2024.

TODO

  1. Optimize code structure
  2. Add more language support
  3. Write usage documentation and code analysis
  4. Add command line mode for easy use

审计赏金成果:截止2024年5月,此工具已获得$60000+ image

Audit bounty results: As of May 2024, this tool has received $60,000+


  1. 优化代码结构
  2. 增加更多语言支持
  3. 编写使用文档和代码解析
  4. 增加命令行模式,方便使用

Introduction

This is a vulnerability mining engine purely based on GPT, requiring no prior knowledge base, no fine-tuning, yet its effectiveness can overwhelmingly surpass most of the current related research.

The key lies in the design of prompts, which has shown excellent results. The core idea revolves around:

  • Being task-driven, not question-driven.
  • Driven by prompts, not by code.
  • Focused on prompt design, not model design.

The essence is encapsulated in one word: "deception."

Note:

  • This is a type of code understanding logic vulnerability mining that fully stimulates the capabilities of gpt. The control flow type vulnerability detection ability is ineffective and is suitable for real actual projects.
  • Therefore, don’t run tests on meaningless academic vulnerabilities

GPT Engine Usage

Vulnerability Scanning

Here's the translation into English:

Test Environment Setup

  1. In the src/main.py file, set switch_production_or_test to test to configure the environment in test mode.

  2. Place the project under the directory src/dataset/agent-v1-c4. This structure is crucial for proper tool positioning and interaction with data.

  3. Refer to the configuration file src/dataset/agent-v1-c4/datasets.json to set up your project collection. For example:

"StEverVault2":{
    "path":"StEverVault",
    "files":[
    ],
    "functions":[]
}

Where StEverVault2 represents the custom name of the project, matching the project_id in src/main.py. path refers to the actual path of the project under agent-v1-c4. files specifies the contract files to be scanned; if not configured, it defaults to scanning all files. functions specifies the specific function names to be scanned; if not configured, it defaults to scanning all functions, in the format [contract_name.function_name].

  1. Use src/db.sql to create the database; PostgreSQL needs to be installed beforehand.

  2. Set up the .env file by creating it and filling in the following details to configure your environment:

# Database connection information
DATABASE_URL=postgresql://postgres:[email protected]:5432/postgres

# OpenAI API
OPENAI_API_BASE="apix.ai-gaochao.cn"
OPENAI_API_KEY=xxxxxx

# Model IDs
BUSINESS_FLOW_MODEL_ID=gpt-4-turbo
VUL_MODEL_ID=gpt-4-turbo

# Business flow scanning parameters
BUSINESS_FLOW_COUNT=10

SWITCH_FUNCTION_CODE=False
SWITCH_BUSINESS_CODE=True

Where:

  • DATABASE_URL is the database connection information.
  • OPENAI_API_BASE is the GPT API connection information, usually api.openai.com.
  • OPENAI_API_KEY should be set to your actual OpenAI API key.
  • BUSINESS_FLOW_MODEL_ID and VUL_MODEL_ID are the IDs of the models used, recommended to use gpt-4-turbo.
  • BUSINESS_FLOW_COUNT is the number of randomizations used to create variability, typically 7-20, commonly 10.
  • SWITCH_FUNCTION_CODE and SWITCH_BUSINESS_CODE are the granularity settings during scanning, supporting function-level and business flow-level granularity.
  1. After configuring, run main.py to start the scanning process.

介绍

这是一个纯基于gpt的漏洞挖掘引擎,不需要任何前置知识库,不需要任何fine-tuning,但效果足可以碾压当前大部分相关研究的效果

核心关键在于prompt的设计,效果非常好

核心思路:

  • task driven, not question driven
  • 关键一个字在于“骗”
  • 利用幻觉,喜欢幻觉

  • 这是一种充分激发gpt能力的代码理解型的逻辑漏洞挖掘,控制流类型的漏洞检测能力效果差,适用于真正的实际项目
  • 因此,不要拿那些无意义的学术型漏洞来跑测试

GPT Engine 使用说明

测试环境设置如下:

  1. src/main.py 文件中,将 switch_production_or_test 设置为 test,以配置环境为测试模式。
if __name__ == '__main__':
    switch_production_or_test = 'test' # prod / test
    if switch_production_or_test == 'test':
        # Your code for test environment
  1. 将项目放置于 src/dataset/agent-v1-c4 目录下,这一结构对于工具正确定位和与数据交互至关重要。

  2. 参照 src/dataset/agent-v1-c4/datasets.json 配置文件来设置你的项目集。例如:

"StEverVault2":{
    "path":"StEverVault",
    "files":[
    ],
    "functions":[]
}

其中,StEverVault2 代表项目自定义名,它的名字与 src/main.py 中的 project_id 相同。path 指代的是 agent-v1-c4 下项目的具体实际路径。files 指代的是要具体扫描的合约文件,如果不配置,则默认扫描全部。functions 指代的是要具体扫描的函数名,如果不配置,则默认扫描全部函数,形式为【合约名.函数名】。

  1. 使用 src/db.sql 创建数据库,需要提前安装 PostgreSQL。

  2. 设置 .env 文件,通过创建 .env 文件并填写以下内容来配置你的环境:

# 数据库连接信息
DATABASE_URL=postgresql://postgres:[email protected]:5432/postgres

# OpenAI API
OPENAI_API_BASE="apix.ai-gaochao.cn"
OPENAI_API_KEY=xxxxxx

# 模型ID
BUSINESS_FLOW_MODEL_ID=gpt-4-turbo
VUL_MODEL_ID=gpt-4-turbo

# 业务流扫描参数
BUSINESS_FLOW_COUNT=10

SWITCH_FUNCTION_CODE=False
SWITCH_BUSINESS_CODE=True

其中:

  • DATABASE_URL 为数据库连接信息。
  • OPENAI_API_BASE 为 GPT API 连接信息,一般情况下为 api.openai.com
  • OPENAI_API_KEY 设置为对应的 OpenAI API 密钥。
  • BUSINESS_FLOW_MODEL_IDVUL_MODEL_ID 为所使用的模型 ID,建议使用 gpt-4-turbo
  • BUSINESS_FLOW_COUNT 为利用幻觉造成随机性时设置的随机次数,一般为 7-20,常用 10。
  • SWITCH_FUNCTION_CODESWITCH_BUSINESS_CODE 为扫描时的粒度,支持函数粒度和业务流粒度。
  1. 配置完成后,运行 main.py 即可开始扫描过程。

  2. 扫描时可能会因为网络原因或api原因中断,对于此已经整理成随时保存,不修改project_id的情况下可以重新运行main.py,可以继续扫描

  3. 唯一建议gpt4-turbo,不要用3.5,不要用4o,4o和3.5的推理能力是一样的,拉的一批

  4. 一般扫描时间为2-3小时,取决于项目大小和随机次数,中型项目+10次随机大约2个半小时

  5. 中型项目+10次随机大约需要20-30美金成本

  6. 当前还是有误报,按项目大小,大约30-65%,小项目误报会少一些,且还有很多自定义的东西,后续会继续优化

  7. 结果做了很多标记和中文解释

  8. 优先看result列中有【"result":"yes"】的(有时候是"result": "yes",带个空格)

  9. category列优先筛选出【dont need In-project other contract】 的

  10. 具体的代码看business_flow_code列

  11. 代码位置看name列

注意

  1. gpt4效果会更好,gpt3尚未深入尝试
  2. 这个tricky prompt理论上经过轻微变种,可以有效的扫描任何语言,但是尽量需要antlr相应语言的ast解析做支持,因为如果有code slicing,效果会更好
  3. 目前只支持solidity,后续会支持更多语言

TODO

刚刚release,还没写完,后续再补充

For Tasks:

Click tags to check more tools for each tasks

For Jobs:

Alternative AI tools for cheating-based-prompt-engine

Similar Open Source Tools

For similar tasks

For similar jobs