
carla
Open-source simulator for autonomous driving research.
Stars: 12252

CARLA is an open-source simulator for autonomous driving research. It provides open-source code, protocols, and digital assets (urban layouts, buildings, vehicles) for developing, training, and validating autonomous driving systems. CARLA supports flexible specification of sensor suites and environmental conditions.
README:
CARLA is an open-source simulator for autonomous driving research. CARLA has been developed from the ground up to support development, training, and validation of autonomous driving systems. In addition to open-source code and protocols, CARLA provides open digital assets (urban layouts, buildings, vehicles) that were created for this purpose and can be used freely. The simulation platform supports flexible specification of sensor suites and environmental conditions.
[!NOTE] This is the development branch
ue5-dev
for the Unreal Engine 5.5 version of CARLA. This branch exists in parallel with the Unreal Engine 4.26 version of CARLA, in theue4-dev
branch. Please be sure that this version of CARLA is suitable for your needs as there are significant differences between the UE 5.5 and UE 4.26 versions of CARLA.
- Intel i7 gen 9th - 11th / Intel i9 gen 9th - 11th / AMD Ryzen 7 / AMD Ryzen 9
- +32 Gb RAM memory
- NVIDIA RTX 3070/3080/3090 / NVIDIA RTX 4090 or better
- 16 Gb or more VRAM
- Ubuntu 22.04 or Windows 11
[!NOTE] Ubuntu version 22.04 and Windows version 11 are required, the Unreal Engine 5.5 version of CARLA will not work on Ubuntu 20.04 or Windows 10 or lower.
The CARLA documentation is hosted on ReadTheDocs. Please see the following key links:
- Building on Linux
- Building on Windows
- First steps
- CARLA asset catalogue
- Python API reference
- Blueprint library
Repositories associated with the CARLA simulation platform:
- CARLA Autonomous Driving leaderboard: Automatic platform to validate Autonomous Driving stacks
- Scenario_Runner: Engine to execute traffic scenarios in CARLA 0.9.X
- ROS-bridge: Interface to connect CARLA 0.9.X to ROS
- Driving-benchmarks: Benchmark tools for Autonomous Driving tasks
- Conditional Imitation-Learning: Training and testing Conditional Imitation Learning models in CARLA
- AutoWare AV stack: Bridge to connect AutoWare AV stack to CARLA
- Reinforcement-Learning: Code for running Conditional Reinforcement Learning models in CARLA
- RoadRunner: MATLAB GUI based application to create road networks in OpenDrive format
- Map Editor: Standalone GUI application to enhance RoadRunner maps with traffic lights and traffic signs information
Like what you see? Star us on GitHub to support the project!
If you use CARLA, please cite our CoRL’17 paper.
CARLA: An Open Urban Driving Simulator
Alexey Dosovitskiy, German Ros,
Felipe Codevilla, Antonio Lopez, Vladlen Koltun; PMLR 78:1-16
[PDF]
[talk]
@inproceedings{Dosovitskiy17,
title = {{CARLA}: {An} Open Urban Driving Simulator},
author = {Alexey Dosovitskiy and German Ros and Felipe Codevilla and Antonio Lopez and Vladlen Koltun},
booktitle = {Proceedings of the 1st Annual Conference on Robot Learning},
pages = {1--16},
year = {2017}
}
Clone this repository locally from GitHub, specifying the ue5-dev branch:
git clone -b ue5-dev https://github.com/carla-simulator/carla.git CarlaUE5
In order to build CARLA, you need acces to the CARLA fork of Unreal Engine 5.5. In order to access this repository, you must first link your GitHub account to Epic Games by following this guide. You then also need to use your git credentials to authorise the download of the Unreal Engine 5.5 repository.
Building in Linux:
Run the setup script from a terminal open in the CARLA root directory:
cd CarlaUE5
./CarlaSetup.sh --interactive
The setup script will prompt you for your sudo password, in order to install the prerequisites. It will then prompt you for your GitHub credentials in order to authorise the download of the Unreal Engine repository.
The setup script will install by default Python 3 using apt. If you want to target an existing Python installation, you should use the --python-root=PATH_TO_PYTHON
argument with the relevant Python installation path. You can use whereis python3 in your chosen environment and strip the /python3
suffix from the path.
Building in Linux unattended:
If you want to run the setup script unattended, your git credentials need to be stored in an environment variable. Add your github credentials to your .bashrc
file:
export GIT_LOCAL_CREDENTIALS=username@github_token
Then run the setup script using the following command:
cd CarlaUE5
sudo -E ./CarlaSetup.sh
This will download and install Unreal Engine 5.5, install the prerequisites and build CARLA. It may take some time to complete and use a significant amount of disk space.
If you prefer to add the git credentials in the terminal, use the following command:
cd CarlaUE5
sudo -E env GIT_LOCAL_CREDENTIALS=github_username@github_token ./CarlaSetup.sh
Building in Windows:
To build in Windows, run the batch script:
cd CarlaUE5
CarlaSetup.bat
Unattended mode is currently unavailable in Windows, you will need to enter GitHub credentials or administrator privileges when prompted.
Once the setup is complete, you can execute subsequent builds with the following commands in a terminal open in the CARLA root directory. In Linux, run these commands in a standard terminal. In Windows, open the x64 Native Tools Command Prompt for Visual Studio 2022.
Configure:
Linux:
cmake -G Ninja -S . -B Build --toolchain=$PWD/CMake/Toolchain.cmake -DCMAKE_BUILD_TYPE=Release -DENABLE_ROS2=ON
Windows:
cmake -G Ninja -S . -B Build --toolchain=$PWD/CMake/Toolchain.cmake -DCMAKE_BUILD_TYPE=Release
[!NOTE] If you intend to target a specific Python installation, you should add both these arguments to the above cmake command:
-DPython_ROOT_DIR=PATH
and-DPython3_ROOT_DIR=PATH
.
Build:
Linux and Windows:
cmake --build Build
Build and install the Python API:
Linux and windows:
cmake --build Build --target carla-python-api-install
Launch the editor:
cmake --build Build --target launch
For more instructions on building CARLA UE5, please consult the build documentation for Linux or Windows.
Please take a look at our Contribution guidelines.
CARLA specific code is distributed under the MIT License.
CARLA specific assets are distributed under the CC-BY License.
Unreal Engine 5 follows its own license terms.
CARLA uses some dependencies related to 3rd party integrations:
- PROJ, a generic coordinate transformation software which uses the X/MIT open source license.
- SQLite, part of the PROJ dependencies, which is in the public domain.
- Xerces-C, a validating XML parser, which is made available under the Apache Software License, Version 2.0.
- Eigen, a C++ template library for linear algebra which uses the MPL2 license.
CARLA uses the Autodesk FBX SDK for converting FBX to OBJ in the import process of maps. This step is optional, and the SDK is located here
This software contains Autodesk® FBX® code developed by Autodesk, Inc. Copyright 2020 Autodesk, Inc. All rights, reserved. Such code is provided "as is" and Autodesk, Inc. disclaims any and all warranties, whether express or implied, including without limitation the implied warranties of merchantability, fitness for a particular purpose or non-infringement of third party rights. In no event shall Autodesk, Inc. be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of such code."
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for carla
Similar Open Source Tools

carla
CARLA is an open-source simulator for autonomous driving research. It provides open-source code, protocols, and digital assets (urban layouts, buildings, vehicles) for developing, training, and validating autonomous driving systems. CARLA supports flexible specification of sensor suites and environmental conditions.

RepoAgent
RepoAgent is an LLM-powered framework designed for repository-level code documentation generation. It automates the process of detecting changes in Git repositories, analyzing code structure through AST, identifying inter-object relationships, replacing Markdown content, and executing multi-threaded operations. The tool aims to assist developers in understanding and maintaining codebases by providing comprehensive documentation, ultimately improving efficiency and saving time.

Sanmill
Sanmill is a free, powerful UCI-like N men's morris program with CUI, Flutter GUI and Qt GUI. Nine men's morris is a strategy board game for two players dating at least to the Roman Empire. The game is also known as nine-man morris , mill , mills , the mill game , merels , merrills , merelles , marelles , morelles , and ninepenny marl in English.

TaskWeaver
TaskWeaver is a code-first agent framework designed for planning and executing data analytics tasks. It interprets user requests through code snippets, coordinates various plugins to execute tasks in a stateful manner, and preserves both chat history and code execution history. It supports rich data structures, customized algorithms, domain-specific knowledge incorporation, stateful execution, code verification, easy debugging, security considerations, and easy extension. TaskWeaver is easy to use with CLI and WebUI support, and it can be integrated as a library. It offers detailed documentation, demo examples, and citation guidelines.

chatnio
Chat Nio is a next-generation AI one-stop solution that provides a rich and user-friendly interface for interacting with various AI models. It offers features such as AI chat conversation, rich format compatibility, markdown support, message menu support, multi-platform adaptation, dialogue memory, full-model file parsing, full-model DuckDuckGo online search, full-screen large text editing, model marketplace, preset support, site announcements, preference settings, internationalization support, and a rich admin system. Chat Nio also boasts a powerful channel management system that utilizes a self-developed channel distribution algorithm, supports multi-channel management, is compatible with multiple formats, allows for custom models, supports channel retries, enables balanced load within the same channel, and provides channel model mapping and user grouping. Additionally, Chat Nio offers forwarding API services that are compatible with multiple formats in the OpenAI universal format and support multiple model compatible layers. It also provides a custom build and install option for highly customizable deployments. Chat Nio is an open-source project licensed under the Apache License 2.0 and welcomes contributions from the community.

SheetCopilot
SheetCopilot is an assistant agent that manipulates spreadsheets by following user commands. It leverages Large Language Models (LLMs) to interact with spreadsheets like a human expert, enabling non-expert users to complete tasks on complex software such as Google Sheets and Excel via a language interface. The tool observes spreadsheet states, polishes generated solutions based on external action documents and error feedback, and aims to improve success rate and efficiency. SheetCopilot offers a dataset with diverse task categories and operations, supporting operations like entry & manipulation, management, formatting, charts, and pivot tables. Users can interact with SheetCopilot in Excel or Google Sheets, executing tasks like calculating revenue, creating pivot tables, and plotting charts. The tool's evaluation includes performance comparisons with leading LLMs and VBA-based methods on specific datasets, showcasing its capabilities in controlling various aspects of a spreadsheet.

guidellm
GuideLLM is a powerful tool for evaluating and optimizing the deployment of large language models (LLMs). By simulating real-world inference workloads, GuideLLM helps users gauge the performance, resource needs, and cost implications of deploying LLMs on various hardware configurations. This approach ensures efficient, scalable, and cost-effective LLM inference serving while maintaining high service quality. Key features include performance evaluation, resource optimization, cost estimation, and scalability testing.

gptme
GPTMe is a tool that allows users to interact with an LLM assistant directly in their terminal in a chat-style interface. The tool provides features for the assistant to run shell commands, execute code, read/write files, and more, making it suitable for various development and terminal-based tasks. It serves as a local alternative to ChatGPT's 'Code Interpreter,' offering flexibility and privacy when using a local model. GPTMe supports code execution, file manipulation, context passing, self-correction, and works with various AI models like GPT-4. It also includes a GitHub Bot for requesting changes and operates entirely in GitHub Actions. In progress features include handling long contexts intelligently, a web UI and API for conversations, web and desktop vision, and a tree-based conversation structure.

OpenDAN-Personal-AI-OS
OpenDAN is an open source Personal AI OS that consolidates various AI modules for personal use. It empowers users to create powerful AI agents like assistants, tutors, and companions. The OS allows agents to collaborate, integrate with services, and control smart devices. OpenDAN offers features like rapid installation, AI agent customization, connectivity via Telegram/Email, building a local knowledge base, distributed AI computing, and more. It aims to simplify life by putting AI in users' hands. The project is in early stages with ongoing development and future plans for user and kernel mode separation, home IoT device control, and an official OpenDAN SDK release.

gptme
Personal AI assistant/agent in your terminal, with tools for using the terminal, running code, editing files, browsing the web, using vision, and more. A great coding agent that is general-purpose to assist in all kinds of knowledge work, from a simple but powerful CLI. An unconstrained local alternative to ChatGPT with 'Code Interpreter', Cursor Agent, etc. Not limited by lack of software, internet access, timeouts, or privacy concerns if using local models.

prompty
Prompty is an asset class and format for LLM prompts designed to enhance observability, understandability, and portability for developers. The primary goal is to accelerate the developer inner loop. This repository contains the Prompty Language Specification and a documentation site. The Visual Studio Code extension offers a prompt playground to streamline the prompt engineering process.

aistore
AIStore is a lightweight object storage system designed for AI applications. It is highly scalable, reliable, and easy to use. AIStore can be deployed on any commodity hardware, and it can be used to store and manage large datasets for deep learning and other AI applications.

XLearning
XLearning is a scheduling platform for big data and artificial intelligence, supporting various machine learning and deep learning frameworks. It runs on Hadoop Yarn and integrates frameworks like TensorFlow, MXNet, Caffe, Theano, PyTorch, Keras, XGBoost. XLearning offers scalability, compatibility, multiple deep learning framework support, unified data management based on HDFS, visualization display, and compatibility with code at native frameworks. It provides functions for data input/output strategies, container management, TensorBoard service, and resource usage metrics display. XLearning requires JDK >= 1.7 and Maven >= 3.3 for compilation, and deployment on CentOS 7.2 with Java >= 1.7 and Hadoop 2.6, 2.7, 2.8.

agentok
Agentok Studio is a visual tool built for AutoGen, a cutting-edge agent framework from Microsoft and various contributors. It offers intuitive visual tools to simplify the construction and management of complex agent-based workflows. Users can create workflows visually as graphs, chat with agents, and share flow templates. The tool is designed to streamline the development process for creators and developers working on next-generation Multi-Agent Applications.

Whisper-TikTok
Discover Whisper-TikTok, an innovative AI-powered tool that leverages the prowess of Edge TTS, OpenAI-Whisper, and FFMPEG to craft captivating TikTok videos. Whisper-TikTok effortlessly generates accurate transcriptions from audio files and integrates Microsoft Edge Cloud Text-to-Speech API for vibrant voiceovers. The program orchestrates the synthesis of videos using a structured JSON dataset, generating mesmerizing TikTok content in minutes.
For similar tasks

carla
CARLA is an open-source simulator for autonomous driving research. It provides open-source code, protocols, and digital assets (urban layouts, buildings, vehicles) for developing, training, and validating autonomous driving systems. CARLA supports flexible specification of sensor suites and environmental conditions.
For similar jobs

carla
CARLA is an open-source simulator for autonomous driving research. It provides open-source code, protocols, and digital assets (urban layouts, buildings, vehicles) for developing, training, and validating autonomous driving systems. CARLA supports flexible specification of sensor suites and environmental conditions.

ChatSim
ChatSim is a tool designed for editable scene simulation for autonomous driving via LLM-Agent collaboration. It provides functionalities for setting up the environment, installing necessary dependencies like McNeRF and Inpainting tools, and preparing data for simulation. Users can train models, simulate scenes, and track trajectories for smoother and more realistic results. The tool integrates with Blender software and offers options for training McNeRF models and McLight's skydome estimation network. It also includes a trajectory tracking module for improved trajectory tracking. ChatSim aims to facilitate the simulation of autonomous driving scenarios with collaborative LLM-Agents.

Awesome-World-Models
This repository is a curated list of papers related to World Models for General Video Generation, Embodied AI, and Autonomous Driving. It includes foundation papers, blog posts, technical reports, surveys, benchmarks, and specific world models for different applications. The repository serves as a valuable resource for researchers and practitioners interested in world models and their applications in robotics and AI.

spear
SPEAR (Simulator for Photorealistic Embodied AI Research) is a powerful tool for training embodied agents. It features 300 unique virtual indoor environments with 2,566 unique rooms and 17,234 unique objects that can be manipulated individually. Each environment is designed by a professional artist and features detailed geometry, photorealistic materials, and a unique floor plan and object layout. SPEAR is implemented as Unreal Engine assets and provides an OpenAI Gym interface for interacting with the environments via Python.

openvino
OpenVINO™ is an open-source toolkit for optimizing and deploying AI inference. It provides a common API to deliver inference solutions on various platforms, including CPU, GPU, NPU, and heterogeneous devices. OpenVINO™ supports pre-trained models from Open Model Zoo and popular frameworks like TensorFlow, PyTorch, and ONNX. Key components of OpenVINO™ include the OpenVINO™ Runtime, plugins for different hardware devices, frontends for reading models from native framework formats, and the OpenVINO Model Converter (OVC) for adjusting models for optimal execution on target devices.

peft
PEFT (Parameter-Efficient Fine-Tuning) is a collection of state-of-the-art methods that enable efficient adaptation of large pretrained models to various downstream applications. By only fine-tuning a small number of extra model parameters instead of all the model's parameters, PEFT significantly decreases the computational and storage costs while achieving performance comparable to fully fine-tuned models.

jetson-generative-ai-playground
This repo hosts tutorial documentation for running generative AI models on NVIDIA Jetson devices. The documentation is auto-generated and hosted on GitHub Pages using their CI/CD feature to automatically generate/update the HTML documentation site upon new commits.

emgucv
Emgu CV is a cross-platform .Net wrapper for the OpenCV image-processing library. It allows OpenCV functions to be called from .NET compatible languages. The wrapper can be compiled by Visual Studio, Unity, and "dotnet" command, and it can run on Windows, Mac OS, Linux, iOS, and Android.