![AstrBot](/statics/github-mark.png)
AstrBot
✨易上手的多平台 LLM 聊天机器人及开发框架✨。支持 QQ、QQ频道、Telegram、微信平台(Gewechat, Vchat)、内置 Web Chat,OpenAI GPT、Ollama、DeepSeek、Llama、GLM、Gemini、OneAPI、LLMTuner,支持 LLM Agent 插件开发,可视化面板。一键部署。支持 Dify 工作流、代码执行器、Whisper 语音转文字。
Stars: 708
![screenshot](/screenshots_githubs/Soulter-AstrBot.jpg)
AstrBot is a powerful and versatile tool that leverages the capabilities of large language models (LLMs) like GPT-3, GPT-3.5, and GPT-4 to enhance communication and automate tasks. It seamlessly integrates with popular messaging platforms such as QQ, QQ Channel, and Telegram, enabling users to harness the power of AI within their daily conversations and workflows.
README:
AstrBot 是一个松耦合、异步、支持多消息平台部署、具有易用的插件系统和完善的大语言模型(LLM)接入功能的聊天机器人及开发框架。
- 大语言模型对话。支持各种大语言模型,包括 OpenAI API、Google Gemini、Llama、Deepseek、ChatGLM 等,支持接入本地部署的大模型,通过 Ollama、LLMTuner。具有多轮对话、人格情境、多模态能力,支持图片理解、语音转文字(Whisper)。
- 多消息平台接入。支持接入 QQ(OneBot)、QQ 频道、微信(Gewechat、VChat)、Telegram。后续将支持钉钉、飞书、Discord、WhatsApp、小爱音响。支持速率限制、白名单、关键词过滤、百度内容审核。
- Agent。原生支持部分 Agent 能力,如代码执行器、自然语言待办、网页搜索。对接 Dify 平台,便捷接入 Dify 智能助手、知识库和 Dify 工作流。
- 插件扩展。深度优化的插件机制,支持开发插件扩展功能,极简开发。已支持安装多个插件。
- 可视化管理面板。支持可视化修改配置、插件管理、日志查看等功能,降低配置难度。集成 WebChat,可在面板上与大模型对话。
- 高稳定性、高模块化。基于事件总线和流水线的架构设计,高度模块化,低耦合。
[!TIP] 管理面板在线体验 Demo: https://demo.astrbot.app/
用户名:
astrbot
, 密码:astrbot
。此 Demo 未配置 LLM,因此无法在聊天页使用大模型。
请参阅官方文档 使用 Docker 部署 AstrBot 。
需要电脑上安装有 Python(>3.10)。请参阅官方文档 使用 Windows 一键安装器部署 AstrBot 。
社区贡献的部署方式。
请参阅官方文档 通过源码部署 AstrBot 。
请参阅官方文档 通过源码部署 AstrBot 。
平台 | 支持性 | 详情 | 消息类型 |
---|---|---|---|
✔ | 私聊、群聊 | 文字、图片、语音 | |
QQ 官方API | ✔ | 私聊、群聊,QQ 频道私聊、群聊 | 文字、图片 |
微信 | ✔ | Gewechat。微信个人号私聊、群聊 | 文字、图片、语音 |
Telegram | ✔ | 私聊、群聊 | 文字、图片 |
微信对话开放平台 | 🚧 | 计划内 | - |
飞书 | 🚧 | 计划内 | - |
Discord | 🚧 | 计划内 | - |
🚧 | 计划内 | - | |
小爱音响 | 🚧 | 计划内 | - |
欢迎任何 Issues/Pull Requests!只需要将你的更改提交到此项目 :)
对于新功能的添加,请先通过 Issue 讨论。
[!NOTE] 代码执行器的文件输入/输出目前仅测试了 Napcat(QQ), Lagrange(QQ)
✨基于 Docker 的沙箱化代码执行器(Beta 测试中)✨
✨ 多模态、网页搜索、长文本转图片(可配置) ✨
✨ 自然语言待办事项 ✨
✨ 插件系统——部分插件展示 ✨
✨ 管理面板 ✨
✨ 内置 Web Chat,在线与机器人交互 ✨
[!TIP] 如果本项目对您的生活 / 工作产生了帮助,或者您关注本项目的未来发展,请给项目 Star,这是我维护这个开源项目的动力 <3
アトリは、高性能ですから!
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for AstrBot
Similar Open Source Tools
![AstrBot Screenshot](/screenshots_githubs/Soulter-AstrBot.jpg)
AstrBot
AstrBot is a powerful and versatile tool that leverages the capabilities of large language models (LLMs) like GPT-3, GPT-3.5, and GPT-4 to enhance communication and automate tasks. It seamlessly integrates with popular messaging platforms such as QQ, QQ Channel, and Telegram, enabling users to harness the power of AI within their daily conversations and workflows.
![TigerBot Screenshot](/screenshots_githubs/TigerResearch-TigerBot.jpg)
TigerBot
TigerBot is a cutting-edge foundation for your very own LLM, providing a world-class large model for innovative Chinese-style contributions. It offers various upgrades and features, such as search mode enhancements, support for large context lengths, and the ability to play text-based games. TigerBot is suitable for prompt-based game engine development, interactive game design, and real-time feedback for playable games.
![LLMs-from-scratch-CN Screenshot](/screenshots_githubs/MLNLP-World-LLMs-from-scratch-CN.jpg)
LLMs-from-scratch-CN
This repository is a Chinese translation of the GitHub project 'LLMs-from-scratch', including detailed markdown notes and related Jupyter code. The translation process aims to maintain the accuracy of the original content while optimizing the language and expression to better suit Chinese learners' reading habits. The repository features detailed Chinese annotations for all Jupyter code, aiding users in practical implementation. It also provides various supplementary materials to expand knowledge. The project focuses on building Large Language Models (LLMs) from scratch, covering fundamental constructions like Transformer architecture, sequence modeling, and delving into deep learning models such as GPT and BERT. Each part of the project includes detailed code implementations and learning resources to help users construct LLMs from scratch and master their core technologies.
![EmoLLM Screenshot](/screenshots_githubs/SmartFlowAI-EmoLLM.jpg)
EmoLLM
EmoLLM is a series of large-scale psychological health counseling models that can support **understanding-supporting-helping users** in the psychological health counseling chain, which is fine-tuned from `LLM` instructions. Welcome everyone to star~⭐⭐. The currently open source `LLM` fine-tuning configurations are as follows:
![awesome-ai-painting Screenshot](/screenshots_githubs/hua1995116-awesome-ai-painting.jpg)
awesome-ai-painting
This repository, named 'awesome-ai-painting', is a comprehensive collection of resources related to AI painting. It is curated by a user named 秋风, who is an AI painting enthusiast with a background in the AIGC industry. The repository aims to help more people learn AI painting and also documents the user's goal of creating 100 AI products, with current progress at 4/100. The repository includes information on various AI painting products, tutorials, tools, and models, providing a valuable resource for individuals interested in AI painting and related technologies.
![Firefly Screenshot](/screenshots_githubs/yangjianxin1-Firefly.jpg)
Firefly
Firefly is an open-source large model training project that supports pre-training, fine-tuning, and DPO of mainstream large models. It includes models like Llama3, Gemma, Qwen1.5, MiniCPM, Llama, InternLM, Baichuan, ChatGLM, Yi, Deepseek, Qwen, Orion, Ziya, Xverse, Mistral, Mixtral-8x7B, Zephyr, Vicuna, Bloom, etc. The project supports full-parameter training, LoRA, QLoRA efficient training, and various tasks such as pre-training, SFT, and DPO. Suitable for users with limited training resources, QLoRA is recommended for fine-tuning instructions. The project has achieved good results on the Open LLM Leaderboard with QLoRA training process validation. The latest version has significant updates and adaptations for different chat model templates.
![Steel-LLM Screenshot](/screenshots_githubs/zhanshijinwat-Steel-LLM.jpg)
Steel-LLM
Steel-LLM is a project to pre-train a large Chinese language model from scratch using over 1T of data to achieve a parameter size of around 1B, similar to TinyLlama. The project aims to share the entire process including data collection, data processing, pre-training framework selection, model design, and open-source all the code. The goal is to enable reproducibility of the work even with limited resources. The name 'Steel' is inspired by a band '万能青年旅店' and signifies the desire to create a strong model despite limited conditions. The project involves continuous data collection of various cultural elements, trivia, lyrics, niche literature, and personal secrets to train the LLM. The ultimate aim is to fill the model with diverse data and leave room for individual input, fostering collaboration among users.
![widgets Screenshot](/screenshots_githubs/widget-js-widgets.jpg)
widgets
Widgets is a desktop component front-end open source component. The project is still being continuously improved. The desktop component client can be downloaded and run in two ways: 1. https://www.microsoft.com/store/productId/9NPR50GQ7T53 2. https://widgetjs.cn After cloning the code, you need to download the dependency in the project directory: `shell pnpm install` and run: `shell pnpm serve`
![Qbot Screenshot](/screenshots_githubs/UFund-Me-Qbot.jpg)
Qbot
Qbot is an AI-oriented automated quantitative investment platform that supports diverse machine learning modeling paradigms, including supervised learning, market dynamics modeling, and reinforcement learning. It provides a full closed-loop process from data acquisition, strategy development, backtesting, simulation trading to live trading. The platform emphasizes AI strategies such as machine learning, reinforcement learning, and deep learning, combined with multi-factor models to enhance returns. Users with some Python knowledge and trading experience can easily utilize the platform to address trading pain points and gaps in the market.
![chatluna Screenshot](/screenshots_githubs/ChatLunaLab-chatluna.jpg)
chatluna
Chatluna is a machine learning model plugin that provides chat services with large language models. It is highly extensible, supports multiple output formats, and offers features like custom conversation presets, rate limiting, and context awareness. Users can deploy Chatluna under Koishi without additional configuration. The plugin supports various models/platforms like OpenAI, Azure OpenAI, Google Gemini, and more. It also provides preset customization using YAML files and allows for easy forking and development within Koishi projects. However, the project lacks web UI, HTTP server, and project documentation, inviting contributions from the community.
![video-subtitle-remover Screenshot](/screenshots_githubs/YaoFANGUK-video-subtitle-remover.jpg)
video-subtitle-remover
Video-subtitle-remover (VSR) is a software based on AI technology that removes hard subtitles from videos. It achieves the following functions: - Lossless resolution: Remove hard subtitles from videos, generate files with subtitles removed - Fill the region of removed subtitles using a powerful AI algorithm model (non-adjacent pixel filling and mosaic removal) - Support custom subtitle positions, only remove subtitles in defined positions (input position) - Support automatic removal of all text in the entire video (no input position required) - Support batch removal of watermark text from multiple images.
![agentica Screenshot](/screenshots_githubs/shibing624-agentica.jpg)
agentica
Agentica is a human-centric framework for building large language model agents. It provides functionalities for planning, memory management, tool usage, and supports features like reflection, planning and execution, RAG, multi-agent, multi-role, and workflow. The tool allows users to quickly code and orchestrate agents, customize prompts, and make API calls to various services. It supports API calls to OpenAI, Azure, Deepseek, Moonshot, Claude, Ollama, and Together. Agentica aims to simplify the process of building AI agents by providing a user-friendly interface and a range of functionalities for agent development.
![Semi-Auto-NovelAI-to-Pixiv Screenshot](/screenshots_githubs/zhulinyv-Semi-Auto-NovelAI-to-Pixiv.jpg)
Semi-Auto-NovelAI-to-Pixiv
Semi-Auto-NovelAI-to-Pixiv is a powerful tool that enables batch image generation with NovelAI, along with various other useful features in a super user-friendly interface. It allows users to create images, generate random images, upload images to Pixiv, apply filters, enhance images, add watermarks, and more. The tool also supports video-to-image conversion and various image manipulation tasks. It offers a seamless experience for users looking to automate image processing tasks.
![Llama-Chinese Screenshot](/screenshots_githubs/LlamaFamily-Llama-Chinese.jpg)
Llama-Chinese
Llama中文社区是一个专注于Llama模型在中文方面的优化和上层建设的高级技术社区。 **已经基于大规模中文数据,从预训练开始对Llama2模型进行中文能力的持续迭代升级【Done】**。**正在对Llama3模型进行中文能力的持续迭代升级【Doing】** 我们热忱欢迎对大模型LLM充满热情的开发者和研究者加入我们的行列。
![jiwu-mall-chat-tauri Screenshot](/screenshots_githubs/KiWi233333-jiwu-mall-chat-tauri.jpg)
jiwu-mall-chat-tauri
Jiwu Chat Tauri APP is a desktop chat application based on Nuxt3 + Tauri + Element Plus framework. It provides a beautiful user interface with integrated chat and social functions. It also supports AI shopping chat and global dark mode. Users can engage in real-time chat, share updates, and interact with AI customer service through this application.
![gpt_server Screenshot](/screenshots_githubs/shell-nlp-gpt_server.jpg)
gpt_server
The GPT Server project leverages the basic capabilities of FastChat to provide the capabilities of an openai server. It perfectly adapts more models, optimizes models with poor compatibility in FastChat, and supports loading vllm, LMDeploy, and hf in various ways. It also supports all sentence_transformers compatible semantic vector models, including Chat templates with function roles, Function Calling (Tools) capability, and multi-modal large models. The project aims to reduce the difficulty of model adaptation and project usage, making it easier to deploy the latest models with minimal code changes.
For similar tasks
![LLMStack Screenshot](/screenshots_githubs/trypromptly-LLMStack.jpg)
LLMStack
LLMStack is a no-code platform for building generative AI agents, workflows, and chatbots. It allows users to connect their own data, internal tools, and GPT-powered models without any coding experience. LLMStack can be deployed to the cloud or on-premise and can be accessed via HTTP API or triggered from Slack or Discord.
![ai-guide Screenshot](/screenshots_githubs/Crataco-ai-guide.jpg)
ai-guide
This guide is dedicated to Large Language Models (LLMs) that you can run on your home computer. It assumes your PC is a lower-end, non-gaming setup.
![onnxruntime-genai Screenshot](/screenshots_githubs/microsoft-onnxruntime-genai.jpg)
onnxruntime-genai
ONNX Runtime Generative AI is a library that provides the generative AI loop for ONNX models, including inference with ONNX Runtime, logits processing, search and sampling, and KV cache management. Users can call a high level `generate()` method, or run each iteration of the model in a loop. It supports greedy/beam search and TopP, TopK sampling to generate token sequences, has built in logits processing like repetition penalties, and allows for easy custom scoring.
![jupyter-ai Screenshot](/screenshots_githubs/jupyterlab-jupyter-ai.jpg)
jupyter-ai
Jupyter AI connects generative AI with Jupyter notebooks. It provides a user-friendly and powerful way to explore generative AI models in notebooks and improve your productivity in JupyterLab and the Jupyter Notebook. Specifically, Jupyter AI offers: * An `%%ai` magic that turns the Jupyter notebook into a reproducible generative AI playground. This works anywhere the IPython kernel runs (JupyterLab, Jupyter Notebook, Google Colab, Kaggle, VSCode, etc.). * A native chat UI in JupyterLab that enables you to work with generative AI as a conversational assistant. * Support for a wide range of generative model providers, including AI21, Anthropic, AWS, Cohere, Gemini, Hugging Face, NVIDIA, and OpenAI. * Local model support through GPT4All, enabling use of generative AI models on consumer grade machines with ease and privacy.
![khoj Screenshot](/screenshots_githubs/khoj-ai-khoj.jpg)
khoj
Khoj is an open-source, personal AI assistant that extends your capabilities by creating always-available AI agents. You can share your notes and documents to extend your digital brain, and your AI agents have access to the internet, allowing you to incorporate real-time information. Khoj is accessible on Desktop, Emacs, Obsidian, Web, and Whatsapp, and you can share PDF, markdown, org-mode, notion files, and GitHub repositories. You'll get fast, accurate semantic search on top of your docs, and your agents can create deeply personal images and understand your speech. Khoj is self-hostable and always will be.
![langchain_dart Screenshot](/screenshots_githubs/davidmigloz-langchain_dart.jpg)
langchain_dart
LangChain.dart is a Dart port of the popular LangChain Python framework created by Harrison Chase. LangChain provides a set of ready-to-use components for working with language models and a standard interface for chaining them together to formulate more advanced use cases (e.g. chatbots, Q&A with RAG, agents, summarization, extraction, etc.). The components can be grouped into a few core modules: * **Model I/O:** LangChain offers a unified API for interacting with various LLM providers (e.g. OpenAI, Google, Mistral, Ollama, etc.), allowing developers to switch between them with ease. Additionally, it provides tools for managing model inputs (prompt templates and example selectors) and parsing the resulting model outputs (output parsers). * **Retrieval:** assists in loading user data (via document loaders), transforming it (with text splitters), extracting its meaning (using embedding models), storing (in vector stores) and retrieving it (through retrievers) so that it can be used to ground the model's responses (i.e. Retrieval-Augmented Generation or RAG). * **Agents:** "bots" that leverage LLMs to make informed decisions about which available tools (such as web search, calculators, database lookup, etc.) to use to accomplish the designated task. The different components can be composed together using the LangChain Expression Language (LCEL).
![danswer Screenshot](/screenshots_githubs/danswer-ai-danswer.jpg)
danswer
Danswer is an open-source Gen-AI Chat and Unified Search tool that connects to your company's docs, apps, and people. It provides a Chat interface and plugs into any LLM of your choice. Danswer can be deployed anywhere and for any scale - on a laptop, on-premise, or to cloud. Since you own the deployment, your user data and chats are fully in your own control. Danswer is MIT licensed and designed to be modular and easily extensible. The system also comes fully ready for production usage with user authentication, role management (admin/basic users), chat persistence, and a UI for configuring Personas (AI Assistants) and their Prompts. Danswer also serves as a Unified Search across all common workplace tools such as Slack, Google Drive, Confluence, etc. By combining LLMs and team specific knowledge, Danswer becomes a subject matter expert for the team. Imagine ChatGPT if it had access to your team's unique knowledge! It enables questions such as "A customer wants feature X, is this already supported?" or "Where's the pull request for feature Y?"
![infinity Screenshot](/screenshots_githubs/infiniflow-infinity.jpg)
infinity
Infinity is an AI-native database designed for LLM applications, providing incredibly fast full-text and vector search capabilities. It supports a wide range of data types, including vectors, full-text, and structured data, and offers a fused search feature that combines multiple embeddings and full text. Infinity is easy to use, with an intuitive Python API and a single-binary architecture that simplifies deployment. It achieves high performance, with 0.1 milliseconds query latency on million-scale vector datasets and up to 15K QPS.
For similar jobs
![sweep Screenshot](/screenshots_githubs/sweepai-sweep.jpg)
sweep
Sweep is an AI junior developer that turns bugs and feature requests into code changes. It automatically handles developer experience improvements like adding type hints and improving test coverage.
![teams-ai Screenshot](/screenshots_githubs/microsoft-teams-ai.jpg)
teams-ai
The Teams AI Library is a software development kit (SDK) that helps developers create bots that can interact with Teams and Microsoft 365 applications. It is built on top of the Bot Framework SDK and simplifies the process of developing bots that interact with Teams' artificial intelligence capabilities. The SDK is available for JavaScript/TypeScript, .NET, and Python.
![ai-guide Screenshot](/screenshots_githubs/Crataco-ai-guide.jpg)
ai-guide
This guide is dedicated to Large Language Models (LLMs) that you can run on your home computer. It assumes your PC is a lower-end, non-gaming setup.
![classifai Screenshot](/screenshots_githubs/10up-classifai.jpg)
classifai
Supercharge WordPress Content Workflows and Engagement with Artificial Intelligence. Tap into leading cloud-based services like OpenAI, Microsoft Azure AI, Google Gemini and IBM Watson to augment your WordPress-powered websites. Publish content faster while improving SEO performance and increasing audience engagement. ClassifAI integrates Artificial Intelligence and Machine Learning technologies to lighten your workload and eliminate tedious tasks, giving you more time to create original content that matters.
![chatbot-ui Screenshot](/screenshots_githubs/mckaywrigley-chatbot-ui.jpg)
chatbot-ui
Chatbot UI is an open-source AI chat app that allows users to create and deploy their own AI chatbots. It is easy to use and can be customized to fit any need. Chatbot UI is perfect for businesses, developers, and anyone who wants to create a chatbot.
![BricksLLM Screenshot](/screenshots_githubs/bricks-cloud-BricksLLM.jpg)
BricksLLM
BricksLLM is a cloud native AI gateway written in Go. Currently, it provides native support for OpenAI, Anthropic, Azure OpenAI and vLLM. BricksLLM aims to provide enterprise level infrastructure that can power any LLM production use cases. Here are some use cases for BricksLLM: * Set LLM usage limits for users on different pricing tiers * Track LLM usage on a per user and per organization basis * Block or redact requests containing PIIs * Improve LLM reliability with failovers, retries and caching * Distribute API keys with rate limits and cost limits for internal development/production use cases * Distribute API keys with rate limits and cost limits for students
![uAgents Screenshot](/screenshots_githubs/fetchai-uAgents.jpg)
uAgents
uAgents is a Python library developed by Fetch.ai that allows for the creation of autonomous AI agents. These agents can perform various tasks on a schedule or take action on various events. uAgents are easy to create and manage, and they are connected to a fast-growing network of other uAgents. They are also secure, with cryptographically secured messages and wallets.
![griptape Screenshot](/screenshots_githubs/griptape-ai-griptape.jpg)
griptape
Griptape is a modular Python framework for building AI-powered applications that securely connect to your enterprise data and APIs. It offers developers the ability to maintain control and flexibility at every step. Griptape's core components include Structures (Agents, Pipelines, and Workflows), Tasks, Tools, Memory (Conversation Memory, Task Memory, and Meta Memory), Drivers (Prompt and Embedding Drivers, Vector Store Drivers, Image Generation Drivers, Image Query Drivers, SQL Drivers, Web Scraper Drivers, and Conversation Memory Drivers), Engines (Query Engines, Extraction Engines, Summary Engines, Image Generation Engines, and Image Query Engines), and additional components (Rulesets, Loaders, Artifacts, Chunkers, and Tokenizers). Griptape enables developers to create AI-powered applications with ease and efficiency.