
Auto-Deep-Research
Your Fully-Automated Personal AI Assistant, and Open-Source & Cost-Efficient Alternative to OpenAI's Deep Research
Stars: 163

Auto-Deep-Research is an open-source and cost-efficient alternative to OpenAI's Deep Research, based on the AutoAgent framework. It offers high performance, universal LLM support, flexible interaction, cost-efficiency, file support, and one-click launch. Users can seamlessly integrate with various LLMs, handle file uploads, and start instantly with a simple command. The tool aims to provide a fully-automated and personalized AI assistant at a lower cost, catering to community needs and showcasing the potential of AutoAgent for practical AI applications.
README:
Welcome to Auto-Deep-Research! Auto-Deep-Research is a open-source and cost-efficient alternative to OpenAI's Deep Research, based on AutoAgent framework.
- π High Performance: Ranks the #1 spot among open-sourced methods, delivering comparable performance to OpenAI's Deep Research.
- π Universal LLM Support: Seamlessly integrates with A Wide Range of LLMs (e.g., OpenAI, Anthropic, Deepseek, vLLM, Grok, Huggingface ...)
- π Flexible Interaction: Supports both function-calling and non-function-calling interaction LLMs.
- π° Cost-Efficient: Open-source alternative to Deep Research's $200/month subscription with your own pay-as-you-go LLM API keys.
- π File Support: Handles file uploads for enhanced data interaction
- π One-Click Launch: Get started instantly with a simple
auto deep-research
command - Zero Configuration needed, truly out-of-the-box experience.
π Own your own personal assistant with much lower cost. Try π₯Auto-Deep-Researchπ₯ Now!
- [2025, Feb 16]: Β ππWe've cleaned up the codebase of AutoAgent, removed the irrelevant parts for Auto-Deep-Research and released the first version of Auto-Deep-Research.
- β¨ Features
- π₯ News
- π§ Why to release Auto-Deep-Research?
- β‘ Quick Start
- βοΈ Todo List
- π Documentation
- π€ Join the Community
- π Acknowledgements
- π Cite
After releasing AutoAgent (previously known as MetaChain) for a week, we've observed three compelling reasons to introduce Auto-Deep-Research:
-
Community Interest We noticed significant community interest in our Deep Research alternative functionality. In response, we've streamlined the codebase by removing non-Deep-Research related components to create a more focused tool.
-
Framework Extensibility Auto-Deep-Research serves as the first ready-to-use product built on AutoAgent, demonstrating how quickly and easily you can create powerful Agent Apps using our framework.
-
Community-Driven Improvements We've incorporated valuable community feedback from the first week, introducing features like one-click launch and enhanced LLM compatibility to make the tool more accessible and versatile.
Auto-Deep-Research represents our commitment to both the community's needs and the demonstration of AutoAgent's potential as a foundation for building practical AI applications.
conda create -n auto_deep_research python=3.10
conda activate auto_deep_research
git clone https://github.com/HKUDS/Auto-Deep-Research.git
cd Auto-Deep-Research
pip install -e .
We use Docker to containerize the agent-interactive environment. So please install Docker first. You don't need to manually pull the pre-built image, because we have let Auto-Deep-Research automatically pull the pre-built image based on your architecture of your machine.
Create a environment variable file, just like .env.template
, and set the API keys for the LLMs you want to use. Not every LLM API Key is required, use what you need.
You can run auto deep-research
to start Auto-Deep-Research. Some configuration of this command is shown below.
-
--container_name
: Name of the Docker container (default: 'deepresearch') -
--port
: Port for the container (default: 12346) -
COMPLETION_MODEL
: Specify the LLM model to use, you should follow the name of Litellm to set the model name. (Default:claude-3-5-sonnet-20241022
) -
DEBUG
: Enable debug mode for detailed logs (default: False) -
API_BASE_URL
: The base URL for the LLM provider (default: None) -
FN_CALL
: Enable function calling (default: None). Most of time, you could ignore this option because we have already set the default value based on the model name.
We will show you how easy it is to start Auto-Deep-Research with different LLM providers.
- set the
ANTHROPIC_API_KEY
in the.env
file.
ANTHROPIC_API_KEY=your_anthropic_api_key
- run the following command to start Auto-Deep-Research.
auto deep-research # default model is claude-3-5-sonnet-20241022
- set the
OPENAI_API_KEY
in the.env
file.
OPENAI_API_KEY=your_openai_api_key
- run the following command to start Auto-Deep-Research.
COMPLETION_MODEL=gpt-4o auto deep-research
- set the
MISTRAL_API_KEY
in the.env
file.
MISTRAL_API_KEY=your_mistral_api_key
- run the following command to start Auto-Deep-Research.
COMPLETION_MODEL=mistral/mistral-large-2407 auto deep-research
- set the
GEMINI_API_KEY
in the.env
file.
GEMINI_API_KEY=your_gemini_api_key
- run the following command to start Auto-Deep-Research.
COMPLETION_MODEL=gemini/gemini-2.0-flash auto deep-research
- set the
HUGGINGFACE_API_KEY
in the.env
file.
HUGGINGFACE_API_KEY=your_huggingface_api_key
- run the following command to start Auto-Deep-Research.
COMPLETION_MODEL=huggingface/meta-llama/Llama-3.3-70B-Instruct auto deep-research
- set the
GROQ_API_KEY
in the.env
file.
GROQ_API_KEY=your_groq_api_key
- run the following command to start Auto-Deep-Research.
COMPLETION_MODEL=groq/deepseek-r1-distill-llama-70b auto deep-research
- set the
OPENAI_API_KEY
in the.env
file.
OPENAI_API_KEY=your_api_key_for_openai_compatible_endpoints
- run the following command to start Auto-Deep-Research.
COMPLETION_MODEL=openai/grok-2-latest API_BASE_URL=https://api.x.ai/v1 auto deep-research
We recommend using OpenRouter as LLM provider of DeepSeek-R1 temporarily. Because official API of DeepSeek-R1 can not be used efficiently.
- set the
OPENROUTER_API_KEY
in the.env
file.
OPENROUTER_API_KEY=your_openrouter_api_key
- run the following command to start Auto-Deep-Research.
COMPLETION_MODEL=openrouter/deepseek/deepseek-r1 auto deep-research
- set the
DEEPSEEK_API_KEY
in the.env
file.
DEEPSEEK_API_KEY=your_deepseek_api_key
- run the following command to start Auto-Deep-Research.
COMPLETION_MODEL=deepseek/deepseek-chat auto deep-research
You can import the browser cookies to the browser environment to let the agent better access some specific websites. For more details, please refer to the cookies folder.
More features coming soon! π Web GUI interface under development.
Auto-Deep-Research is continuously evolving! Here's what's coming:
- π₯οΈ GUI Agent: Supporting Computer-Use agents with GUI interaction
- ποΈ Code Sandboxes: Supporting additional environments like E2B
- π¨ Web Interface: Developing comprehensive GUI for better user experience
Have ideas or suggestions? Feel free to open an issue! Stay tuned for more exciting updates! π
A more detailed documentation is coming soon π, and we will update in the Documentation page.
If you think the Auto-Deep-Research is helpful, you can join our community by:
- Join our Slack workspace - Here we talk about research, architecture, and future development.
- Join our Discord server - This is a community-run server for general discussion, questions, and feedback.
- Read or post Github Issues - Check out the issues we're working on, or add your own ideas.
Rome wasn't built in a day. Auto-Deep-Research is built on the AutoAgent framework. We extend our sincere gratitude to all the pioneering works that have shaped AutoAgent, including OpenAI Swarm for framework architecture inspiration, Magentic-one for the three-agent design insights, OpenHands for documentation structure, and many other excellent projects that contributed to agent-environment interaction design. Your innovations have been instrumental in making both AutoAgent and Auto-Deep-Research possible.
@misc{AutoAgent,
title={{AutoAgent: A Fully-Automated and Zero-Code Framework for LLM Agents}},
author={Jiabin Tang, Tianyu Fan, Chao Huang},
year={2025},
eprint={202502.05957},
archivePrefix={arXiv},
primaryClass={cs.AI},
url={https://arxiv.org/abs/2502.05957},
}
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for Auto-Deep-Research
Similar Open Source Tools

Auto-Deep-Research
Auto-Deep-Research is an open-source and cost-efficient alternative to OpenAI's Deep Research, based on the AutoAgent framework. It offers high performance, universal LLM support, flexible interaction, cost-efficiency, file support, and one-click launch. Users can seamlessly integrate with various LLMs, handle file uploads, and start instantly with a simple command. The tool aims to provide a fully-automated and personalized AI assistant at a lower cost, catering to community needs and showcasing the potential of AutoAgent for practical AI applications.

AutoAgent
AutoAgent is a fully-automated and zero-code framework that enables users to create and deploy LLM agents through natural language alone. It is a top performer on the GAIA Benchmark, equipped with a native self-managing vector database, and allows for easy creation of tools, agents, and workflows without any coding. AutoAgent seamlessly integrates with a wide range of LLMs and supports both function-calling and ReAct interaction modes. It is designed to be dynamic, extensible, customized, and lightweight, serving as a personal AI assistant.

fastapi-langgraph-agent-production-ready-template
A production-ready FastAPI template for building AI agent applications with LangGraph integration. This template provides a robust foundation for building scalable, secure, and maintainable AI agent services. It includes features like FastAPI for high-performance async API endpoints, LangGraph integration, structured logging, rate limiting, PostgreSQL for data persistence, Docker support, security measures like JWT-based authentication and input sanitization, developer-friendly features like environment-specific configuration and type hints, a model evaluation framework with automated metric-based evaluation and detailed JSON reports, and a configuration system with environment-specific settings.

pear-landing-page
PearAI Landing Page is an open-source AI-powered code editor managed by Nang and Pan. It is built with Next.js, Vercel, Tailwind CSS, and TypeScript. The project requires setting up environment variables for proper configuration. Users can run the project locally by starting the development server and visiting the specified URL in the browser. Recommended extensions include Prettier, ESLint, and JavaScript and TypeScript Nightly. Contributions to the project are welcomed and appreciated.

codefuse-ide
CodeFuse IDE is an AI-native integrated development environment that leverages AI technologies to enhance productivity and streamline workflows. It supports seamless integration of various models, enabling developers to customize and extend functionality. The platform is compatible with VS Code extensions, providing access to a rich ecosystem of plugins. CodeFuse IDE uses electron-forge for packaging desktop applications and supports development, building, packaging, and auto updates.

Devon
Devon is an open-source pair programmer tool designed to facilitate collaborative coding sessions. It provides features such as multi-file editing, codebase exploration, test writing, bug fixing, and architecture exploration. The tool supports Anthropic, OpenAI, and Groq APIs, with plans to add more models in the future. Devon is community-driven, with ongoing development goals including multi-model support, plugin system for tool builders, self-hostable Electron app, and setting SOTA on SWE-bench Lite. Users can contribute to the project by developing core functionality, conducting research on agent performance, providing feedback, and testing the tool.

BIRD-CRITIC-1
BIRD-CRITIC 1.0 is a SQL benchmark designed to evaluate the capability of large language models (LLMs) in diagnosing and solving user issues within real-world database environments. It comprises 600 tasks for development and 200 held-out out-of-distribution tests across 4 prominent open-source SQL dialects. The benchmark expands beyond simple SELECT queries to cover a wider range of SQL operations, reflecting actual application scenarios. An optimized execution-based evaluation environment is included for rigorous and efficient validation.

VeritasGraph
VeritasGraph is an enterprise-grade graph RAG framework designed for secure, on-premise AI applications. It leverages a knowledge graph to perform complex, multi-hop reasoning, providing transparent, auditable reasoning paths with full source attribution. The framework excels at answering complex questions that traditional vector search engines struggle with, ensuring trust and reliability in enterprise AI. VeritasGraph offers full control over data and AI models, verifiable attribution for every claim, advanced graph reasoning capabilities, and open-source deployment with sovereignty and customization.

llmaz
llmaz is an easy, advanced inference platform for large language models on Kubernetes. It aims to provide a production-ready solution that integrates with state-of-the-art inference backends. The platform supports efficient model distribution, accelerator fungibility, SOTA inference, various model providers, multi-host support, and scaling efficiency. Users can quickly deploy LLM services with minimal configurations and benefit from a wide range of advanced inference backends. llmaz is designed to optimize cost and performance while supporting cutting-edge researches like Speculative Decoding or Splitwise on Kubernetes.

eliza
Eliza is a versatile AI agent operating system designed to support various models and connectors, enabling users to create chatbots, autonomous agents, handle business processes, create video game NPCs, and engage in trading. It offers multi-agent and room support, document ingestion and interaction, retrievable memory and document store, and extensibility to create custom actions and clients. Eliza is easy to use and provides a comprehensive solution for AI agent development.

Biomni
Biomni is a general-purpose biomedical AI agent designed to autonomously execute a wide range of research tasks across diverse biomedical subfields. By integrating cutting-edge large language model (LLM) reasoning with retrieval-augmented planning and code-based execution, Biomni helps scientists dramatically enhance research productivity and generate testable hypotheses.

pipecat-flows
Pipecat Flows is a framework designed for building structured conversations in AI applications. It allows users to create both predefined conversation paths and dynamically generated flows, handling state management and LLM interactions. The framework includes a Python module for building conversation flows and a visual editor for designing and exporting flow configurations. Pipecat Flows is suitable for scenarios such as customer service scripts, intake forms, personalized experiences, and complex decision trees.

extension-gen-ai
The Looker GenAI Extension provides code examples and resources for building a Looker Extension that integrates with Vertex AI Large Language Models (LLMs). Users can leverage the power of LLMs to enhance data exploration and analysis within Looker. The extension offers generative explore functionality to ask natural language questions about data and generative insights on dashboards to analyze data by asking questions. It leverages components like BQML Remote Models, BQML Remote UDF with Vertex AI, and Custom Fine Tune Model for different integration options. Deployment involves setting up infrastructure with Terraform and deploying the Looker Extension by creating a Looker project, copying extension files, configuring BigQuery connection, connecting to Git, and testing the extension. Users can save example prompts and configure user settings for the extension. Development of the Looker Extension environment includes installing dependencies, starting the development server, and building for production.

ApeRAG
ApeRAG is a production-ready platform for Retrieval-Augmented Generation (RAG) that combines Graph RAG, vector search, and full-text search with advanced AI agents. It is ideal for building Knowledge Graphs, Context Engineering, and deploying intelligent AI agents for autonomous search and reasoning across knowledge bases. The platform offers features like advanced index types, intelligent AI agents with MCP support, enhanced Graph RAG with entity normalization, multimodal processing, hybrid retrieval engine, MinerU integration for document parsing, production-grade deployment with Kubernetes, enterprise management features, MCP integration, and developer-friendly tools for customization and contribution.

fraim
Fraim is an AI-powered toolkit designed for security engineers to enhance their workflows by leveraging AI capabilities. It offers solutions to find, detect, fix, and flag vulnerabilities throughout the development lifecycle. The toolkit includes features like Risk Flagger for identifying risks in code changes, Code Security Analysis for context-aware vulnerability detection, and Infrastructure as Code Analysis for spotting misconfigurations in cloud environments. Fraim can be run as a CLI tool or integrated into Github Actions, making it a versatile solution for security teams and organizations looking to enhance their security practices with AI technology.

codepair
CodePair is an open-source real-time collaborative markdown editor with AI intelligence, allowing users to collaboratively edit documents, share documents with external parties, and utilize AI intelligence within the editor. It is built using React, NestJS, and LangChain. The repository contains frontend and backend code, with detailed instructions for setting up and running each part. Users can choose between Frontend Development Only Mode or Full Stack Development Mode based on their needs. CodePair also integrates GitHub OAuth for Social Login feature. Contributors are welcome to submit patches and follow the contribution workflow.
For similar tasks

Azure-Analytics-and-AI-Engagement
The Azure-Analytics-and-AI-Engagement repository provides packaged Industry Scenario DREAM Demos with ARM templates (Containing a demo web application, Power BI reports, Synapse resources, AML Notebooks etc.) that can be deployed in a customerβs subscription using the CAPE tool within a matter of few hours. Partners can also deploy DREAM Demos in their own subscriptions using DPoC.

sorrentum
Sorrentum is an open-source project that aims to combine open-source development, startups, and brilliant students to build machine learning, AI, and Web3 / DeFi protocols geared towards finance and economics. The project provides opportunities for internships, research assistantships, and development grants, as well as the chance to work on cutting-edge problems, learn about startups, write academic papers, and get internships and full-time positions at companies working on Sorrentum applications.

tidb
TiDB is an open-source distributed SQL database that supports Hybrid Transactional and Analytical Processing (HTAP) workloads. It is MySQL compatible and features horizontal scalability, strong consistency, and high availability.

zep-python
Zep is an open-source platform for building and deploying large language model (LLM) applications. It provides a suite of tools and services that make it easy to integrate LLMs into your applications, including chat history memory, embedding, vector search, and data enrichment. Zep is designed to be scalable, reliable, and easy to use, making it a great choice for developers who want to build LLM-powered applications quickly and easily.

telemetry-airflow
This repository codifies the Airflow cluster that is deployed at workflow.telemetry.mozilla.org (behind SSO) and commonly referred to as "WTMO" or simply "Airflow". Some links relevant to users and developers of WTMO: * The `dags` directory in this repository contains some custom DAG definitions * Many of the DAGs registered with WTMO don't live in this repository, but are instead generated from ETL task definitions in bigquery-etl * The Data SRE team maintains a WTMO Developer Guide (behind SSO)

mojo
Mojo is a new programming language that bridges the gap between research and production by combining Python syntax and ecosystem with systems programming and metaprogramming features. Mojo is still young, but it is designed to become a superset of Python over time.

pandas-ai
PandasAI is a Python library that makes it easy to ask questions to your data in natural language. It helps you to explore, clean, and analyze your data using generative AI.

databend
Databend is an open-source cloud data warehouse that serves as a cost-effective alternative to Snowflake. With its focus on fast query execution and data ingestion, it's designed for complex analysis of the world's largest datasets.
For similar jobs

weave
Weave is a toolkit for developing Generative AI applications, built by Weights & Biases. With Weave, you can log and debug language model inputs, outputs, and traces; build rigorous, apples-to-apples evaluations for language model use cases; and organize all the information generated across the LLM workflow, from experimentation to evaluations to production. Weave aims to bring rigor, best-practices, and composability to the inherently experimental process of developing Generative AI software, without introducing cognitive overhead.

LLMStack
LLMStack is a no-code platform for building generative AI agents, workflows, and chatbots. It allows users to connect their own data, internal tools, and GPT-powered models without any coding experience. LLMStack can be deployed to the cloud or on-premise and can be accessed via HTTP API or triggered from Slack or Discord.

VisionCraft
The VisionCraft API is a free API for using over 100 different AI models. From images to sound.

kaito
Kaito is an operator that automates the AI/ML inference model deployment in a Kubernetes cluster. It manages large model files using container images, avoids tuning deployment parameters to fit GPU hardware by providing preset configurations, auto-provisions GPU nodes based on model requirements, and hosts large model images in the public Microsoft Container Registry (MCR) if the license allows. Using Kaito, the workflow of onboarding large AI inference models in Kubernetes is largely simplified.

PyRIT
PyRIT is an open access automation framework designed to empower security professionals and ML engineers to red team foundation models and their applications. It automates AI Red Teaming tasks to allow operators to focus on more complicated and time-consuming tasks and can also identify security harms such as misuse (e.g., malware generation, jailbreaking), and privacy harms (e.g., identity theft). The goal is to allow researchers to have a baseline of how well their model and entire inference pipeline is doing against different harm categories and to be able to compare that baseline to future iterations of their model. This allows them to have empirical data on how well their model is doing today, and detect any degradation of performance based on future improvements.

tabby
Tabby is a self-hosted AI coding assistant, offering an open-source and on-premises alternative to GitHub Copilot. It boasts several key features: * Self-contained, with no need for a DBMS or cloud service. * OpenAPI interface, easy to integrate with existing infrastructure (e.g Cloud IDE). * Supports consumer-grade GPUs.

spear
SPEAR (Simulator for Photorealistic Embodied AI Research) is a powerful tool for training embodied agents. It features 300 unique virtual indoor environments with 2,566 unique rooms and 17,234 unique objects that can be manipulated individually. Each environment is designed by a professional artist and features detailed geometry, photorealistic materials, and a unique floor plan and object layout. SPEAR is implemented as Unreal Engine assets and provides an OpenAI Gym interface for interacting with the environments via Python.

Magick
Magick is a groundbreaking visual AIDE (Artificial Intelligence Development Environment) for no-code data pipelines and multimodal agents. Magick can connect to other services and comes with nodes and templates well-suited for intelligent agents, chatbots, complex reasoning systems and realistic characters.