SwanLab
⚡️SwanLab: your ML experiment notebook. 你的AI实验笔记本,跟踪与可视化你的机器学习全流程
Stars: 433
SwanLab is an open-source, lightweight AI experiment tracking tool that provides a platform for tracking, comparing, and collaborating on experiments, aiming to accelerate the research and development efficiency of AI teams by 100 times. It offers a friendly API and a beautiful interface, combining hyperparameter tracking, metric recording, online collaboration, experiment link sharing, real-time message notifications, and more. With SwanLab, researchers can document their training experiences, seamlessly communicate and collaborate with collaborators, and machine learning engineers can develop models for production faster.
README:
🔥SwanLab Cloud · 📃Document · WeChat · Report Issue · Feedback · Changelog
Table of contents
- 👋🏻 Introduction
- 📃 Demo
- 🏁 Quick Start
- 💻 Self-hosted
- 🚗 Integration
- 🆚 Comparison with Familiar Tools
- 👥 Community
- 📃 License
SwanLab is an open-source, lightweight AI experiment tracking tool that provides a platform for tracking, comparing, and collaborating on experiments.
It offers a user-friendly API and a decent interface, combining features such as tracking hyperparameter, recording metric, online collaboration, and sharing experiment link.
Here is the English version of the core feature list for an AI platform:
1. 📊 Experimental Metrics and Tracking Hyperparameter: Embed your machine learning pipeline with minimalistic code and track key training metrics.
- Flexible recording of hyperparameters and experiment configurations.
- Supported metadata types: scalar metrics, images, audio, text, etc.
- Supported chart types: line graphs, media charts (images, audio, text), etc.
- Automatic logging: console logging, GPU hardware, Git information, Python interpreter, list of Python libraries, code directory.
2. ⚡️ Comprehensive Framework Integration: PyTorch、Tensorflow、PyTorch Lightning、🤗HuggingFace、Transformers、MMEngine、Ultralytics、fastai、Tensorboard、OpenAI、ZhipuAI、Hydra、...
3. 📦 Organizing Experiments: Centralized dashboard for efficiently managing multiple projects and experiments, providing an overview of training at a glance.
4. 🆚 Comparing Results: Use online tables and paired charts to compare the hyperparameters and outcomes of different experiments, developing iterative inspiration.
5. 👥 Online Collaboration: Collaborate with your team on training projects, supporting real-time synchronization of experiments under the same project, allowing you to synchronize training records of the team online and share insights and suggestions based on results.
6. ✉️ Sharing Results: Copy and send persistent URLs to share each experiment, efficiently send them to colleagues, or embed them in online notes.
7. 💻 Self-hosting Support: Supports offline mode with a self-hosted community version that also allows for dashboard viewing and experiment management.
[!IMPORTANT]
Star Us, You will receive all release notifications from GitHub without any delay ~ ⭐️
Check out SwanLab's online demo:
ResNet50 Cats vs Dogs | Yolov8-COCO128 |
---|---|
Track the image classification task of training a simple ResNet50 model on the cats and dogs dataset. | Perform object detection tasks using Yolov8 on the COCO128 dataset, tracking training hyperparameters and metrics. |
Qwen2 Instruction Finetune | LSTM Google Stock Prediction |
---|---|
Track the instruction fine-tuning training of the Qwen2 large language model, completing simple instruction following. | Train a simple LSTM model on the Google stock price dataset to predict future stock prices. |
pip install swanlab
-
Free Sign Up
-
Log in to your account, go to User Settings > API Key and copy your API Key.
-
Open your terminal and enter:
swanlab login
When prompted, enter your API Key and press Enter to complete the login.
import swanlab
# Create a new SwanLab experiment
swanlab.init(
project="my-first-ml",
config={'learning-rate': 0.003}
)
# Log metrics
for i in range(10):
swanlab.log({"loss": i})
All set! Visit SwanLab to see your first SwanLab experiment.
The community edition supports offline viewing of SwanLab dashboards.
Set the parameters logir
and mode
in swanlab.init to track experiments offline:
...
swanlab.init(
logdir='./logs',
mode='local',
)
...
-
The parameter
mode
is set tolocal
, which disables synchronizing the experiment to the cloud. -
The setting of the parameter
logdir
is optional, and it specifies the location for saving SwanLab log files (by default saved in theswanlog
folder). -
Log files will be created and updated during tracking of experiments, and launching offline dashboards will also be based on these log files.
Other parts are completely consistent with cloud usage.
Open the terminal and use the following command to open a SwanLab dashboard:
swanlab watch ./logs
After the operation is completed, SwanLab will provide you with a local URL link (default is http://127.0.0.1:5092).
Visit this link to view the experiment offline in the browser dashboard.
Combine your favorite framework with SwanLab, More Integration.
⚡️ PyTorch Lightning
Create an instance using SwanLabLogger
and pass it into the logger
parameter of Trainer
to enable SwanLab to
record training metrics.
from swanlab.integration.pytorch_lightning import SwanLabLogger
import importlib.util
import os
import pytorch_lightning as pl
from torch import nn, optim, utils
from torchvision.datasets import MNIST
from torchvision.transforms import ToTensor
encoder = nn.Sequential(nn.Linear(28 * 28, 128), nn.ReLU(), nn.Linear(128, 3))
decoder = nn.Sequential(nn.Linear(3, 128), nn.ReLU(), nn.Linear(128, 28 * 28))
class LitAutoEncoder(pl.LightningModule):
def __init__(self, encoder, decoder):
super().__init__()
self.encoder = encoder
self.decoder = decoder
def training_step(self, batch, batch_idx):
# training_step defines the train loop.
# it is independent of forward
x, y = batch
x = x.view(x.size(0), -1)
z = self.encoder(x)
x_hat = self.decoder(z)
loss = nn.functional.mse_loss(x_hat, x)
# Logging to TensorBoard (if installed) by default
self.log("train_loss", loss)
return loss
def test_step(self, batch, batch_idx):
# test_step defines the test loop.
# it is independent of forward
x, y = batch
x = x.view(x.size(0), -1)
z = self.encoder(x)
x_hat = self.decoder(z)
loss = nn.functional.mse_loss(x_hat, x)
# Logging to TensorBoard (if installed) by default
self.log("test_loss", loss)
return loss
def configure_optimizers(self):
optimizer = optim.Adam(self.parameters(), lr=1e-3)
return optimizer
# init the autoencoder
autoencoder = LitAutoEncoder(encoder, decoder)
# setup data
dataset = MNIST(os.getcwd(), train=True, download=True, transform=ToTensor())
train_dataset, val_dataset = utils.data.random_split(dataset, [55000, 5000])
test_dataset = MNIST(os.getcwd(), train=False, download=True, transform=ToTensor())
train_loader = utils.data.DataLoader(train_dataset)
val_loader = utils.data.DataLoader(val_dataset)
test_loader = utils.data.DataLoader(test_dataset)
swanlab_logger = SwanLabLogger(
project="swanlab_example",
experiment_name="example_experiment",
cloud=False,
)
trainer = pl.Trainer(limit_train_batches=100, max_epochs=5, logger=swanlab_logger)
trainer.fit(model=autoencoder, train_dataloaders=train_loader, val_dataloaders=val_loader)
trainer.test(dataloaders=test_loader)
🤗HuggingFace Transformers
Create an instance using SwanLabCallback
and pass it into the callbacks
parameter of Trainer
to enable SwanLab to
record training metrics.
import evaluate
import numpy as np
import swanlab
from swanlab.integration.huggingface import SwanLabCallback
from datasets import load_dataset
from transformers import AutoModelForSequenceClassification, AutoTokenizer, Trainer, TrainingArguments
def tokenize_function(examples):
return tokenizer(examples["text"], padding="max_length", truncation=True)
def compute_metrics(eval_pred):
logits, labels = eval_pred
predictions = np.argmax(logits, axis=-1)
return metric.compute(predictions=predictions, references=labels)
dataset = load_dataset("yelp_review_full")
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
tokenized_datasets = dataset.map(tokenize_function, batched=True)
small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000))
small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000))
metric = evaluate.load("accuracy")
model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5)
training_args = TrainingArguments(
output_dir="test_trainer",
report_to="none",
num_train_epochs=3,
logging_steps=50,
)
swanlab_callback = SwanLabCallback(experiment_name="TransformersTest", cloud=False)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=small_train_dataset,
eval_dataset=small_eval_dataset,
compute_metrics=compute_metrics,
callbacks=[swanlab_callback],
)
trainer.train()
MMEngine(MMDetection etc.)
Integrate SwanlabVisBackend
into MMEngine to enable automatic logging of training metrics by SwanLab.
Add the following code snippet to your MM config file to start training:
custom_imports = dict(imports=["swanlab.integration.mmengine"], allow_failed_imports=False)
vis_backends = [
dict(
type="SwanlabVisBackend",
save_dir="runs/swanlab",
init_kwargs={
"project": "swanlab-mmengine",
},
),
]
visualizer = dict(
type="Visualizer",
vis_backends=vis_backends,
)
Ultralytics
Integrating SwanLab into Ultralytics is very simple; you can use the add_swanlab_callback
function:
from ultralytics import YOLO
from swanlab.integration.ultralytics import add_swanlab_callback
model = YOLO("yolov8n.yaml")
model.load()
add_swanlab_callback(model)
model.train(
data="./coco.yaml",
epochs=50,
imgsz=320,
)
-
☁️ Online Usage Support: With SwanLab, training experiments can be conveniently synchronized and saved in the cloud, allowing for remote monitoring of training progress, managing historical projects, sharing experiment links, sending real-time notification messages, and viewing experiments across multiple devices. In contrast, TensorBoard is an offline experiment tracking tool.
-
👥 Collaborative Multi-user Environment: SwanLab facilitates easy management of multi-person training projects and sharing of experiment links for collaborative machine learning across teams. It also enables cross-space communication and discussion. On the other hand, TensorBoard is primarily designed for individual use, making it difficult to collaborate and share experiments with multiple users.
-
💻 Persistent, Centralized Dashboard: Regardless of where you are training your models, be it on a local computer, a lab cluster, or on public cloud GPU instances, your results are logged to the same centralized dashboard. Using TensorBoard, on the other hand, requires spending time copying and managing TFEvent files from different machines.
-
💪 More Powerful Tables: SwanLab tables allow you to view, search, and filter results from various experiments, making it easy to review thousands of model versions to find the best-performing models for different tasks. TensorBoard is not well-suited for large-scale projects.
-
Weights and Biases is an online-only, proprietary MLOps platform.
-
Not only does SwanLab support online usage, but it also offers an open-source, free, and self-hosted version.
- GitHub Issues:Errors and issues encountered when using SwanLab
- Email support:Feedback on issues with using SwanLab
- WeChat:Discuss issues using SwanLab, share the latest AI technology.
If you like to use SwanLab in your work, please add the SwanLab badge to your README:
[![swanlab](https://img.shields.io/badge/powered%20by-SwanLab-438440)](https://github.com/swanhubx/swanlab)
If you find SwanLab helpful for your research journey, please consider citing in the following format:
@software{Zeyilin_SwanLab_2023,
author = {Zeyi Lin, Shaohong Chen, Kang Li, Qiushan Jiang, Zirui Cai, Kaifang Ji and {The SwanLab team}},
doi = {10.5281/zenodo.11100550},
license = {Apache-2.0},
title = {{SwanLab}},
url = {https://github.com/swanhubx/swanlab},
year = {2023}
}
Considering contributing to SwanLab? First, please take some time to read the Contribution Guidelines.
At the same time, we warmly welcome support for SwanLab through social media, events, and conference sharing. Thank you!
Contributors
This repository follows the Apache 2.0 License open source license.
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for SwanLab
Similar Open Source Tools
SwanLab
SwanLab is an open-source, lightweight AI experiment tracking tool that provides a platform for tracking, comparing, and collaborating on experiments, aiming to accelerate the research and development efficiency of AI teams by 100 times. It offers a friendly API and a beautiful interface, combining hyperparameter tracking, metric recording, online collaboration, experiment link sharing, real-time message notifications, and more. With SwanLab, researchers can document their training experiences, seamlessly communicate and collaborate with collaborators, and machine learning engineers can develop models for production faster.
rl
TorchRL is an open-source Reinforcement Learning (RL) library for PyTorch. It provides pytorch and **python-first** , low and high level abstractions for RL that are intended to be **efficient** , **modular** , **documented** and properly **tested**. The code is aimed at supporting research in RL. Most of it is written in python in a highly modular way, such that researchers can easily swap components, transform them or write new ones with little effort.
beyondllm
Beyond LLM offers an all-in-one toolkit for experimentation, evaluation, and deployment of Retrieval-Augmented Generation (RAG) systems. It simplifies the process with automated integration, customizable evaluation metrics, and support for various Large Language Models (LLMs) tailored to specific needs. The aim is to reduce LLM hallucination risks and enhance reliability.
starwhale
Starwhale is an MLOps/LLMOps platform that brings efficiency and standardization to machine learning operations. It streamlines the model development lifecycle, enabling teams to optimize workflows around key areas like model building, evaluation, release, and fine-tuning. Starwhale abstracts Model, Runtime, and Dataset as first-class citizens, providing tailored capabilities for common workflow scenarios including Models Evaluation, Live Demo, and LLM Fine-tuning. It is an open-source platform designed for clarity and ease of use, empowering developers to build customized MLOps features tailored to their needs.
continuous-eval
Open-Source Evaluation for LLM Applications. `continuous-eval` is an open-source package created for granular and holistic evaluation of GenAI application pipelines. It offers modularized evaluation, a comprehensive metric library covering various LLM use cases, the ability to leverage user feedback in evaluation, and synthetic dataset generation for testing pipelines. Users can define their own metrics by extending the Metric class. The tool allows running evaluation on a pipeline defined with modules and corresponding metrics. Additionally, it provides synthetic data generation capabilities to create user interaction data for evaluation or training purposes.
zeta
Zeta is a tool designed to build state-of-the-art AI models faster by providing modular, high-performance, and scalable building blocks. It addresses the common issues faced while working with neural nets, such as chaotic codebases, lack of modularity, and low performance modules. Zeta emphasizes usability, modularity, and performance, and is currently used in hundreds of models across various GitHub repositories. It enables users to prototype, train, optimize, and deploy the latest SOTA neural nets into production. The tool offers various modules like FlashAttention, SwiGLUStacked, RelativePositionBias, FeedForward, BitLinear, PalmE, Unet, VisionEmbeddings, niva, FusedDenseGELUDense, FusedDropoutLayerNorm, MambaBlock, Film, hyper_optimize, DPO, and ZetaCloud for different tasks in AI model development.
vocode-core
Vocode is an open source library that enables users to build voice-based LLM (Large Language Model) applications quickly and easily. With Vocode, users can create real-time streaming conversations with LLMs and deploy them for phone calls, Zoom meetings, and more. The library offers abstractions and integrations for transcription services, LLMs, and synthesis services, making it a comprehensive tool for voice-based app development. Vocode also provides out-of-the-box integrations with various services like AssemblyAI, OpenAI, Microsoft Azure, and more, allowing users to leverage these services seamlessly in their applications.
TornadoVM
TornadoVM is a plug-in to OpenJDK and GraalVM that allows programmers to automatically run Java programs on heterogeneous hardware. TornadoVM targets OpenCL, PTX and SPIR-V compatible devices which include multi-core CPUs, dedicated GPUs (Intel, NVIDIA, AMD), integrated GPUs (Intel HD Graphics and ARM Mali), and FPGAs (Intel and Xilinx).
pixeltable
Pixeltable is a Python library designed for ML Engineers and Data Scientists to focus on exploration, modeling, and app development without the need to handle data plumbing. It provides a declarative interface for working with text, images, embeddings, and video, enabling users to store, transform, index, and iterate on data within a single table interface. Pixeltable is persistent, acting as a database unlike in-memory Python libraries such as Pandas. It offers features like data storage and versioning, combined data and model lineage, indexing, orchestration of multimodal workloads, incremental updates, and automatic production-ready code generation. The tool emphasizes transparency, reproducibility, cost-saving through incremental data changes, and seamless integration with existing Python code and libraries.
KULLM
KULLM (구름) is a Korean Large Language Model developed by Korea University NLP & AI Lab and HIAI Research Institute. It is based on the upstage/SOLAR-10.7B-v1.0 model and has been fine-tuned for instruction. The model has been trained on 8×A100 GPUs and is capable of generating responses in Korean language. KULLM exhibits hallucination and repetition phenomena due to its decoding strategy. Users should be cautious as the model may produce inaccurate or harmful results. Performance may vary in benchmarks without a fixed system prompt.
scikit-llm
Scikit-LLM is a tool that seamlessly integrates powerful language models like ChatGPT into scikit-learn for enhanced text analysis tasks. It allows users to leverage large language models for various text analysis applications within the familiar scikit-learn framework. The tool simplifies the process of incorporating advanced language processing capabilities into machine learning pipelines, enabling users to benefit from the latest advancements in natural language processing.
flashinfer
FlashInfer is a library for Language Languages Models that provides high-performance implementation of LLM GPU kernels such as FlashAttention, PageAttention and LoRA. FlashInfer focus on LLM serving and inference, and delivers state-the-art performance across diverse scenarios.
catalyst
Catalyst is a C# Natural Language Processing library designed for speed, inspired by spaCy's design. It provides pre-trained models, support for training word and document embeddings, and flexible entity recognition models. The library is fast, modern, and pure-C#, supporting .NET standard 2.0. It is cross-platform, running on Windows, Linux, macOS, and ARM. Catalyst offers non-destructive tokenization, named entity recognition, part-of-speech tagging, language detection, and efficient binary serialization. It includes pre-built models for language packages and lemmatization. Users can store and load models using streams. Getting started with Catalyst involves installing its NuGet Package and setting the storage to use the online repository. The library supports lazy loading of models from disk or online. Users can take advantage of C# lazy evaluation and native multi-threading support to process documents in parallel. Training a new FastText word2vec embedding model is straightforward, and Catalyst also provides algorithms for fast embedding search and dimensionality reduction.
mobius
Mobius is an AI infra platform including realtime computing and training. It is built on Ray, a distributed computing framework, and provides a number of features that make it well-suited for online machine learning tasks. These features include: * **Cross Language**: Mobius can run in multiple languages (only Python and Java are supported currently) with high efficiency. You can implement your operator in different languages and run them in one job. * **Single Node Failover**: Mobius has a special failover mechanism that only needs to rollback the failed node itself, in most cases, to recover the job. This is a huge benefit if your job is sensitive about failure recovery time. * **AutoScaling**: Mobius can generate a new graph with different configurations in runtime without stopping the job. * **Fusion Training**: Mobius can combine TensorFlow/Pytorch and streaming, then building an e2e online machine learning pipeline. Mobius is still under development, but it has already been used to power a number of real-world applications, including: * A real-time recommendation system for a major e-commerce company * A fraud detection system for a large financial institution * A personalized news feed for a major news organization If you are interested in using Mobius for your own online machine learning projects, you can find more information in the documentation.
lancedb
LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrieval, filtering, and management of embeddings. The key features of LanceDB include: Production-scale vector search with no servers to manage. Store, query, and filter vectors, metadata, and multi-modal data (text, images, videos, point clouds, and more). Support for vector similarity search, full-text search, and SQL. Native Python and Javascript/Typescript support. Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure. GPU support in building vector index(*). Ecosystem integrations with LangChain 🦜️🔗, LlamaIndex 🦙, Apache-Arrow, Pandas, Polars, DuckDB, and more on the way. LanceDB's core is written in Rust 🦀 and is built using Lance, an open-source columnar format designed for performant ML workloads.
lance
Lance is a modern columnar data format optimized for ML workflows and datasets. It offers high-performance random access, vector search, zero-copy automatic versioning, and ecosystem integrations with Apache Arrow, Pandas, Polars, and DuckDB. Lance is designed to address the challenges of the ML development cycle, providing a unified data format for collection, exploration, analytics, feature engineering, training, evaluation, deployment, and monitoring. It aims to reduce data silos and streamline the ML development process.
For similar tasks
SwanLab
SwanLab is an open-source, lightweight AI experiment tracking tool that provides a platform for tracking, comparing, and collaborating on experiments, aiming to accelerate the research and development efficiency of AI teams by 100 times. It offers a friendly API and a beautiful interface, combining hyperparameter tracking, metric recording, online collaboration, experiment link sharing, real-time message notifications, and more. With SwanLab, researchers can document their training experiences, seamlessly communicate and collaborate with collaborators, and machine learning engineers can develop models for production faster.
neptune-client
Neptune is a scalable experiment tracker for teams training foundation models. Log millions of runs, effortlessly monitor and visualize model training, and deploy on your infrastructure. Track 100% of metadata to accelerate AI breakthroughs. Log and display any framework and metadata type from any ML pipeline. Organize experiments with nested structures and custom dashboards. Compare results, visualize training, and optimize models quicker. Version models, review stages, and access production-ready models. Share results, manage users, and projects. Integrate with 25+ frameworks. Trusted by great companies to improve workflow.
metaflow
Metaflow is a user-friendly library designed to assist scientists and engineers in developing and managing real-world data science projects. Initially created at Netflix, Metaflow aimed to enhance the productivity of data scientists working on diverse projects ranging from traditional statistics to cutting-edge deep learning. For further information, refer to Metaflow's website and documentation.
mlflow
MLflow is a platform to streamline machine learning development, including tracking experiments, packaging code into reproducible runs, and sharing and deploying models. MLflow offers a set of lightweight APIs that can be used with any existing machine learning application or library (TensorFlow, PyTorch, XGBoost, etc), wherever you currently run ML code (e.g. in notebooks, standalone applications or the cloud). MLflow's current components are:
* `MLflow Tracking
fasttrackml
FastTrackML is an experiment tracking server focused on speed and scalability, fully compatible with MLFlow. It provides a user-friendly interface to track and visualize your machine learning experiments, making it easy to compare different models and identify the best performing ones. FastTrackML is open source and can be easily installed and run with pip or Docker. It is also compatible with the MLFlow Python package, making it easy to integrate with your existing MLFlow workflows.
zenml
ZenML is an extensible, open-source MLOps framework for creating portable, production-ready machine learning pipelines. By decoupling infrastructure from code, ZenML enables developers across your organization to collaborate more effectively as they develop to production.
client
DagsHub is a platform for machine learning and data science teams to build, manage, and collaborate on their projects. With DagsHub you can: 1. Version code, data, and models in one place. Use the free provided DagsHub storage or connect it to your cloud storage 2. Track Experiments using Git, DVC or MLflow, to provide a fully reproducible environment 3. Visualize pipelines, data, and notebooks in and interactive, diff-able, and dynamic way 4. Label your data directly on the platform using Label Studio 5. Share your work with your team members 6. Stream and upload your data in an intuitive and easy way, while preserving versioning and structure. DagsHub is built firmly around open, standard formats for your project. In particular: * Git * DVC * MLflow * Label Studio * Standard data formats like YAML, JSON, CSV Therefore, you can work with DagsHub regardless of your chosen programming language or frameworks.
clearml
ClearML is a suite of tools designed to streamline the machine learning workflow. It includes an experiment manager, MLOps/LLMOps, data management, and model serving capabilities. ClearML is open-source and offers a free tier hosting option. It supports various ML/DL frameworks and integrates with Jupyter Notebook and PyCharm. ClearML provides extensive logging capabilities, including source control info, execution environment, hyper-parameters, and experiment outputs. It also offers automation features, such as remote job execution and pipeline creation. ClearML is designed to be easy to integrate, requiring only two lines of code to add to existing scripts. It aims to improve collaboration, visibility, and data transparency within ML teams.
For similar jobs
sweep
Sweep is an AI junior developer that turns bugs and feature requests into code changes. It automatically handles developer experience improvements like adding type hints and improving test coverage.
teams-ai
The Teams AI Library is a software development kit (SDK) that helps developers create bots that can interact with Teams and Microsoft 365 applications. It is built on top of the Bot Framework SDK and simplifies the process of developing bots that interact with Teams' artificial intelligence capabilities. The SDK is available for JavaScript/TypeScript, .NET, and Python.
ai-guide
This guide is dedicated to Large Language Models (LLMs) that you can run on your home computer. It assumes your PC is a lower-end, non-gaming setup.
classifai
Supercharge WordPress Content Workflows and Engagement with Artificial Intelligence. Tap into leading cloud-based services like OpenAI, Microsoft Azure AI, Google Gemini and IBM Watson to augment your WordPress-powered websites. Publish content faster while improving SEO performance and increasing audience engagement. ClassifAI integrates Artificial Intelligence and Machine Learning technologies to lighten your workload and eliminate tedious tasks, giving you more time to create original content that matters.
chatbot-ui
Chatbot UI is an open-source AI chat app that allows users to create and deploy their own AI chatbots. It is easy to use and can be customized to fit any need. Chatbot UI is perfect for businesses, developers, and anyone who wants to create a chatbot.
BricksLLM
BricksLLM is a cloud native AI gateway written in Go. Currently, it provides native support for OpenAI, Anthropic, Azure OpenAI and vLLM. BricksLLM aims to provide enterprise level infrastructure that can power any LLM production use cases. Here are some use cases for BricksLLM: * Set LLM usage limits for users on different pricing tiers * Track LLM usage on a per user and per organization basis * Block or redact requests containing PIIs * Improve LLM reliability with failovers, retries and caching * Distribute API keys with rate limits and cost limits for internal development/production use cases * Distribute API keys with rate limits and cost limits for students
uAgents
uAgents is a Python library developed by Fetch.ai that allows for the creation of autonomous AI agents. These agents can perform various tasks on a schedule or take action on various events. uAgents are easy to create and manage, and they are connected to a fast-growing network of other uAgents. They are also secure, with cryptographically secured messages and wallets.
griptape
Griptape is a modular Python framework for building AI-powered applications that securely connect to your enterprise data and APIs. It offers developers the ability to maintain control and flexibility at every step. Griptape's core components include Structures (Agents, Pipelines, and Workflows), Tasks, Tools, Memory (Conversation Memory, Task Memory, and Meta Memory), Drivers (Prompt and Embedding Drivers, Vector Store Drivers, Image Generation Drivers, Image Query Drivers, SQL Drivers, Web Scraper Drivers, and Conversation Memory Drivers), Engines (Query Engines, Extraction Engines, Summary Engines, Image Generation Engines, and Image Query Engines), and additional components (Rulesets, Loaders, Artifacts, Chunkers, and Tokenizers). Griptape enables developers to create AI-powered applications with ease and efficiency.