Awesome-LLM
Awesome-LLM: a curated list of Large Language Model
Stars: 17462
Awesome-LLM is a curated list of resources related to large language models, focusing on papers, projects, frameworks, tools, tutorials, courses, opinions, and other useful resources in the field. It covers trending LLM projects, milestone papers, other papers, open LLM projects, LLM training frameworks, LLM evaluation frameworks, tools for deploying LLM, prompting libraries & tools, tutorials, courses, books, and opinions. The repository provides a comprehensive overview of the latest advancements and resources in the field of large language models.
README:
🔥 Large Language Models(LLM) have taken the NLP community AI community the Whole World by storm. Here is a curated list of papers about large language models, especially relating to ChatGPT. It also contains frameworks for LLM training, tools to deploy LLM, courses and tutorials about LLM and all publicly available LLM checkpoints and APIs.
- Deep-Live-Cam - real time face swap and one-click video deepfake with only a single image (uncensored).
- MiniCPM-V 2.6 - A GPT-4V Level MLLM for Single Image, Multi Image and Video on Your Phone
- GPT-SoVITS - 1 min voice data can also be used to train a good TTS model! (few shot voice cloning).
If you're interested in the field of LLM, you may find the above list of milestone papers helpful to explore its history and state-of-the-art. However, each direction of LLM offers a unique set of insights and contributions, which are essential to understanding the field as a whole. For a detailed list of papers in various subfields, please refer to the following link:
-
Awesome-LLM-hallucination - LLM hallucination paper list.
-
awesome-hallucination-detection - List of papers on hallucination detection in LLMs.
-
LLMsPracticalGuide - A curated list of practical guide resources of LLMs
-
Awesome ChatGPT Prompts - A collection of prompt examples to be used with the ChatGPT model.
-
awesome-chatgpt-prompts-zh - A Chinese collection of prompt examples to be used with the ChatGPT model.
-
Awesome ChatGPT - Curated list of resources for ChatGPT and GPT-3 from OpenAI.
-
Chain-of-Thoughts Papers - A trend starts from "Chain of Thought Prompting Elicits Reasoning in Large Language Models.
-
Awesome Deliberative Prompting - How to ask LLMs to produce reliable reasoning and make reason-responsive decisions.
-
Instruction-Tuning-Papers - A trend starts from
Natrural-Instruction
(ACL 2022),FLAN
(ICLR 2022) andT0
(ICLR 2022). -
LLM Reading List - A paper & resource list of large language models.
-
Reasoning using Language Models - Collection of papers and resources on Reasoning using Language Models.
-
Chain-of-Thought Hub - Measuring LLMs' Reasoning Performance
-
Awesome GPT - A curated list of awesome projects and resources related to GPT, ChatGPT, OpenAI, LLM, and more.
-
Awesome GPT-3 - a collection of demos and articles about the OpenAI GPT-3 API.
-
Awesome LLM Human Preference Datasets - a collection of human preference datasets for LLM instruction tuning, RLHF and evaluation.
-
RWKV-howto - possibly useful materials and tutorial for learning RWKV.
-
ModelEditingPapers - A paper & resource list on model editing for large language models.
-
Awesome LLM Security - A curation of awesome tools, documents and projects about LLM Security.
-
Awesome-Align-LLM-Human - A collection of papers and resources about aligning large language models (LLMs) with human.
-
Awesome-Code-LLM - An awesome and curated list of best code-LLM for research.
-
Awesome-LLM-Compression - Awesome LLM compression research papers and tools.
-
Awesome-LLM-Systems - Awesome LLM systems research papers.
-
awesome-llm-webapps - A collection of open source, actively maintained web apps for LLM applications.
-
awesome-japanese-llm - 日本語LLMまとめ - Overview of Japanese LLMs.
-
Awesome-LLM-Healthcare - The paper list of the review on LLMs in medicine.
-
Awesome-LLM-Inference - A curated list of Awesome LLM Inference Paper with codes.
-
Awesome-LLM-3D - A curated list of Multi-modal Large Language Model in 3D world, including 3D understanding, reasoning, generation, and embodied agents.
-
LLMDatahub - a curated collection of datasets specifically designed for chatbot training, including links, size, language, usage, and a brief description of each dataset
-
Awesome-Chinese-LLM - 整理开源的中文大语言模型,以规模较小、可私有化部署、训练成本较低的模型为主,包括底座模型,垂直领域微调及应用,数据集与教程等。
-
LLM4Opt - Applying Large language models (LLMs) for diverse optimization tasks (Opt) is an emerging research area. This is a collection of references and papers of LLM4Opt.
-
awesome-language-model-analysis - This paper list focuses on the theoretical or empirical analysis of language models, e.g., the learning dynamics, expressive capacity, interpretability, generalization, and other interesting topics.
- Chatbot Arena Leaderboard - a benchmark platform for large language models (LLMs) that features anonymous, randomized battles in a crowdsourced manner.
- MixEval Leaderboard - a ground-truth-based dynamic benchmark derived from off-the-shelf benchmark mixtures, which evaluates LLMs with a highly capable model ranking (i.e., 0.96 correlation with Chatbot Arena) while running locally and quickly (6% the time and cost of running MMLU).
- AlpacaEval Leaderboard - An Automatic Evaluator for Instruction-following Language Models using Nous benchmark suite.
- Open LLM Leaderboard - aims to track, rank and evaluate LLMs and chatbots as they are released.
- OpenCompass 2.0 LLM Leaderboard - OpenCompass is an LLM evaluation platform, supporting a wide range of models (InternLM2,GPT-4,LLaMa2, Qwen,GLM, Claude, etc) over 100+ datasets.
- Berkeley Function-Calling Leaderboard - evaluates LLM's ability to call external functions / tools
- Meta
- Mistral AI
- Apple
- Microsoft
- AllenAI
- xAI
- Cohere
- DeepSeek
- Alibaba
- 01-ai
- Baichuan
- Nvidia
- BLOOM
- Zhipu AI
- OpenBMB
- RWKV Foundation
- ElutherAI
- Stability AI
- BigCode
- DataBricks
- Shanghai AI Laboratory
- LLMDataHub
- IBM data-prep-kit - Open-Source Toolkit for Efficient Unstructured Data Processing with Pre-built Modules and Local to Cluster Scalability.
- lm-evaluation-harness - A framework for few-shot evaluation of language models.
- MixEval - A reliable click-and-go evaluation suite compatible with both open-source and proprietary models, supporting MixEval and other benchmarks.
- lighteval - a lightweight LLM evaluation suite that Hugging Face has been using internally.
- OLMO-eval - a repository for evaluating open language models.
- instruct-eval - This repository contains code to quantitatively evaluate instruction-tuned models such as Alpaca and Flan-T5 on held-out tasks.
- simple-evals - Eval tools by OpenAI.
- Giskard - Testing & evaluation library for LLM applications, in particular RAGs
- LangSmith - a unified platform from LangChain framework for: evaluation, collaboration HITL (Human In The Loop), logging and monitoring LLM applications.
- Ragas - a framework that helps you evaluate your Retrieval Augmented Generation (RAG) pipelines.
- DeepSpeed - DeepSpeed is a deep learning optimization library that makes distributed training and inference easy, efficient, and effective.
- Megatron-DeepSpeed - DeepSpeed version of NVIDIA's Megatron-LM that adds additional support for several features such as MoE model training, Curriculum Learning, 3D Parallelism, and others.
- torchtune - A Native-PyTorch Library for LLM Fine-tuning.
- torchtitan - A native PyTorch Library for large model training.
- Megatron-LM - Ongoing research training transformer models at scale.
- Colossal-AI - Making large AI models cheaper, faster, and more accessible.
- BMTrain - Efficient Training for Big Models.
- Mesh Tensorflow - Mesh TensorFlow: Model Parallelism Made Easier.
- maxtext - A simple, performant and scalable Jax LLM!
- Alpa - Alpa is a system for training and serving large-scale neural networks.
- GPT-NeoX - An implementation of model parallel autoregressive transformers on GPUs, based on the DeepSpeed library.
Reference: llm-inference-solutions
- SGLang - SGLang is a fast serving framework for large language models and vision language models.
- vLLM - A high-throughput and memory-efficient inference and serving engine for LLMs.
- TGI - a toolkit for deploying and serving Large Language Models (LLMs).
- exllama - A more memory-efficient rewrite of the HF transformers implementation of Llama for use with quantized weights.
- llama.cpp - LLM inference in C/C++.
- ollama - Get up and running with Llama 3, Mistral, Gemma, and other large language models.
- Langfuse - Open Source LLM Engineering Platform 🪢 Tracing, Evaluations, Prompt Management, Evaluations and Playground.
- FastChat - A distributed multi-model LLM serving system with web UI and OpenAI-compatible RESTful APIs.
- mistral.rs - Blazingly fast LLM inference.
- MindSQL - A python package for Txt-to-SQL with self hosting functionalities and RESTful APIs compatible with proprietary as well as open source LLM.
- SkyPilot - Run LLMs and batch jobs on any cloud. Get maximum cost savings, highest GPU availability, and managed execution -- all with a simple interface.
- Haystack - an open-source NLP framework that allows you to use LLMs and transformer-based models from Hugging Face, OpenAI and Cohere to interact with your own data.
- Sidekick - Data integration platform for LLMs.
- QA-Pilot - An interactive chat project that leverages Ollama/OpenAI/MistralAI LLMs for rapid understanding and navigation of GitHub code repository or compressed file resources.
- Shell-Pilot - Interact with LLM using Ollama models(or openAI, mistralAI)via pure shell scripts on your Linux(or MacOS) system, enhancing intelligent system management without any dependencies.
- LangChain - Building applications with LLMs through composability
- Floom AI gateway and marketplace for developers, enables streamlined integration of AI features into products
- Swiss Army Llama - Comprehensive set of tools for working with local LLMs for various tasks.
- LiteChain - Lightweight alternative to LangChain for composing LLMs
- magentic - Seamlessly integrate LLMs as Python functions
- wechat-chatgpt - Use ChatGPT On Wechat via wechaty
- promptfoo - Test your prompts. Evaluate and compare LLM outputs, catch regressions, and improve prompt quality.
- Agenta - Easily build, version, evaluate and deploy your LLM-powered apps.
- Serge - a chat interface crafted with llama.cpp for running Alpaca models. No API keys, entirely self-hosted!
- Langroid - Harness LLMs with Multi-Agent Programming
- Embedchain - Framework to create ChatGPT like bots over your dataset.
- CometLLM - A 100% opensource LLMOps platform to log, manage, and visualize your LLM prompts and chains. Track prompt templates, prompt variables, prompt duration, token usage, and other metadata. Score prompt outputs and visualize chat history all within a single UI.
- IntelliServer - simplifies the evaluation of LLMs by providing a unified microservice to access and test multiple AI models.
- OpenLLM - Fine-tune, serve, deploy, and monitor any open-source LLMs in production. Used in production at BentoML for LLMs-based applications.
- DeepSpeed-Mii - MII makes low-latency and high-throughput inference, similar to vLLM powered by DeepSpeed.
- Text-Embeddings-Inference - Inference for text-embeddings in Rust, HFOIL Licence.
- Infinity - Inference for text-embeddings in Python
- TensorRT-LLM - Nvidia Framework for LLM Inference
- FasterTransformer - NVIDIA Framework for LLM Inference(Transitioned to TensorRT-LLM)
- Flash-Attention - A method designed to enhance the efficiency of Transformer models
- Langchain-Chatchat - Formerly langchain-ChatGLM, local knowledge based LLM (like ChatGLM) QA app with langchain.
- Search with Lepton - Build your own conversational search engine using less than 500 lines of code by LeptonAI.
- Robocorp - Create, deploy and operate Actions using Python anywhere to enhance your AI agents and assistants. Batteries included with an extensive set of libraries, helpers and logging.
- LMDeploy - A high-throughput and low-latency inference and serving framework for LLMs and VLs
- Tune Studio - Playground for devs to finetune & deploy LLMs
- LLocalSearch - Locally running websearch using LLM chains
- AI Gateway — Gateway streamlines requests to 100+ open & closed source models with a unified API. It is also production-ready with support for caching, fallbacks, retries, timeouts, loadbalancing, and can be edge-deployed for minimum latency.
- talkd.ai dialog - Simple API for deploying any RAG or LLM that you want adding plugins.
- Wllama - WebAssembly binding for llama.cpp - Enabling in-browser LLM inference
- GPUStack - An open-source GPU cluster manager for running LLMs
- AdalFlow - AdalFlow: The PyTorch library for LLM applications.
- dspy - DSPy: The framework for programming—not prompting—foundation models.
- YiVal — Evaluate and Evolve: YiVal is an open-source GenAI-Ops tool for tuning and evaluating prompts, configurations, and model parameters using customizable datasets, evaluation methods, and improvement strategies.
- Guidance — A handy looking Python library from Microsoft that uses Handlebars templating to interleave generation, prompting, and logical control.
- LangChain — A popular Python/JavaScript library for chaining sequences of language model prompts.
- Evidently — An open-source framework to evaluate, test and monitor ML and LLM-powered systems.
- FLAML (A Fast Library for Automated Machine Learning & Tuning): A Python library for automating selection of models, hyperparameters, and other tunable choices.
- Chainlit — A Python library for making chatbot interfaces.
- Guardrails.ai — A Python library for validating outputs and retrying failures. Still in alpha, so expect sharp edges and bugs.
- Semantic Kernel — A Python/C#/Java library from Microsoft that supports prompt templating, function chaining, vectorized memory, and intelligent planning.
- Prompttools — Open-source Python tools for testing and evaluating models, vector DBs, and prompts.
- Outlines — A Python library that provides a domain-specific language to simplify prompting and constrain generation.
- Promptify — A small Python library for using language models to perform NLP tasks.
- Scale Spellbook — A paid product for building, comparing, and shipping language model apps.
- PromptPerfect — A paid product for testing and improving prompts.
- Weights & Biases — A paid product for tracking model training and prompt engineering experiments.
- OpenAI Evals — An open-source library for evaluating task performance of language models and prompts.
- LlamaIndex — A Python library for augmenting LLM apps with data.
- Arthur Shield — A paid product for detecting toxicity, hallucination, prompt injection, etc.
- LMQL — A programming language for LLM interaction with support for typed prompting, control flow, constraints, and tools.
- ModelFusion - A TypeScript library for building apps with LLMs and other ML models (speech-to-text, text-to-speech, image generation).
- Flappy — Production-Ready LLM Agent SDK for Every Developer.
- GPTRouter - GPTRouter is an open source LLM API Gateway that offers a universal API for 30+ LLMs, vision, and image models, with smart fallbacks based on uptime and latency, automatic retries, and streaming. Stay operational even when OpenAI is down
- QAnything - A local knowledge base question-answering system designed to support a wide range of file formats and databases.
- OneKE — A bilingual Chinese-English knowledge extraction model with knowledge graphs and natural language processing technologies.
- llm-ui - A React library for building LLM UIs.
- Wordware - A web-hosted IDE where non-technical domain experts work with AI Engineers to build task-specific AI agents. We approach prompting as a new programming language rather than low/no-code blocks.
- Wallaroo.AI - Deploy, manage, optimize any model at scale across any environment from cloud to edge. Let's you go from python notebook to inferencing in minutes.
- Dify - An open-source LLM app development platform with an intuitive interface that streamlines AI workflows, model management, and production deployment.
- LazyLLM - An open-source LLM app for building multi-agent LLMs applications in an easy and lazy way, supports model deployment and fine-tuning.
- MemFree - Open Source Hybrid AI Search Engine, Instantly Get Accurate Answers from the Internet, Bookmarks, Notes, and Docs. Support One-Click Deployment
- unslothai - A framework that specializes in efficient fine-tuning. On its GitHub page, you can find ready-to-use fine-tuning templates for various LLMs, allowing you to easily train your own data for free on the Google Colab cloud.
- llm-course - Course to get into Large Language Models (LLMs) with roadmaps and Colab notebooks.
- UWaterloo CS 886 - Recent Advances on Foundation Models.
- CS25-Transformers United
- ChatGPT Prompt Engineering
- Princeton: Understanding Large Language Models
- CS324 - Large Language Models
- State of GPT
- A Visual Guide to Mamba and State Space Models
- Let's build GPT: from scratch, in code, spelled out.
- minbpe - Minimal, clean code for the Byte Pair Encoding (BPE) algorithm commonly used in LLM tokenization.
- femtoGPT - Pure Rust implementation of a minimal Generative Pretrained Transformer.
- Neurips2022-Foundational Robustness of Foundation Models
- ICML2022-Welcome to the "Big Model" Era: Techniques and Systems to Train and Serve Bigger Models
- GPT in 60 Lines of NumPy
- Generative AI with LangChain: Build large language model (LLM) apps with Python, ChatGPT, and other LLMs - it comes with a GitHub repository that showcases a lot of the functionality
- Build a Large Language Model (From Scratch) - A guide to building your own working LLM.
- BUILD GPT: HOW AI WORKS - explains how to code a Generative Pre-trained Transformer, or GPT, from scratch.
- Why did all of the public reproduction of GPT-3 fail?
- A Stage Review of Instruction Tuning
- LLM Powered Autonomous Agents
- Why you should work on AI AGENTS!
- Google "We Have No Moat, And Neither Does OpenAI"
- AI competition statement
- Prompt Engineering
- Noam Chomsky: The False Promise of ChatGPT
- Is ChatGPT 175 Billion Parameters? Technical Analysis
- The Next Generation Of Large Language Models
- Large Language Model Training in 2023
- How does GPT Obtain its Ability? Tracing Emergent Abilities of Language Models to their Sources
- Open Pretrained Transformers
- Scaling, emergence, and reasoning in large language models
- Arize-Phoenix - Open-source tool for ML observability that runs in your notebook environment. Monitor and fine tune LLM, CV and Tabular Models.
- Emergent Mind - The latest AI news, curated & explained by GPT-4.
- ShareGPT - Share your wildest ChatGPT conversations with one click.
- Major LLMs + Data Availability
- 500+ Best AI Tools
- Cohere Summarize Beta - Introducing Cohere Summarize Beta: A New Endpoint for Text Summarization
- chatgpt-wrapper - ChatGPT Wrapper is an open-source unofficial Python API and CLI that lets you interact with ChatGPT.
- Open-evals - A framework extend openai's Evals for different language model.
- Cursor - Write, edit, and chat about your code with a powerful AI.
- AutoGPT - an experimental open-source application showcasing the capabilities of the GPT-4 language model.
- OpenAGI - When LLM Meets Domain Experts.
- EasyEdit - An easy-to-use framework to edit large language models.
- chatgpt-shroud - A Chrome extension for OpenAI's ChatGPT, enhancing user privacy by enabling easy hiding and unhiding of chat history. Ideal for privacy during screen shares.
This is an active repository and your contributions are always welcome!
I will keep some pull requests open if I'm not sure if they are awesome for LLM, you could vote for them by adding 👍 to them.
If you have any question about this opinionated list, do not hesitate to contact me [email protected].
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for Awesome-LLM
Similar Open Source Tools
Awesome-LLM
Awesome-LLM is a curated list of resources related to large language models, focusing on papers, projects, frameworks, tools, tutorials, courses, opinions, and other useful resources in the field. It covers trending LLM projects, milestone papers, other papers, open LLM projects, LLM training frameworks, LLM evaluation frameworks, tools for deploying LLM, prompting libraries & tools, tutorials, courses, books, and opinions. The repository provides a comprehensive overview of the latest advancements and resources in the field of large language models.
MMLU-Pro
MMLU-Pro is an enhanced benchmark designed to evaluate language understanding models across broader and more challenging tasks. It integrates more challenging, reasoning-focused questions and increases answer choices per question, significantly raising difficulty. The dataset comprises over 12,000 questions from academic exams and textbooks across 14 diverse domains. Experimental results show a significant drop in accuracy compared to the original MMLU, with greater stability under varying prompts. Models utilizing Chain of Thought reasoning achieved better performance on MMLU-Pro.
FlagEmbedding
FlagEmbedding focuses on retrieval-augmented LLMs, consisting of the following projects currently: * **Long-Context LLM** : Activation Beacon * **Fine-tuning of LM** : LM-Cocktail * **Embedding Model** : Visualized-BGE, BGE-M3, LLM Embedder, BGE Embedding * **Reranker Model** : llm rerankers, BGE Reranker * **Benchmark** : C-MTEB
InternLM-XComposer
InternLM-XComposer2 is a groundbreaking vision-language large model (VLLM) based on InternLM2-7B excelling in free-form text-image composition and comprehension. It boasts several amazing capabilities and applications: * **Free-form Interleaved Text-Image Composition** : InternLM-XComposer2 can effortlessly generate coherent and contextual articles with interleaved images following diverse inputs like outlines, detailed text requirements and reference images, enabling highly customizable content creation. * **Accurate Vision-language Problem-solving** : InternLM-XComposer2 accurately handles diverse and challenging vision-language Q&A tasks based on free-form instructions, excelling in recognition, perception, detailed captioning, visual reasoning, and more. * **Awesome performance** : InternLM-XComposer2 based on InternLM2-7B not only significantly outperforms existing open-source multimodal models in 13 benchmarks but also **matches or even surpasses GPT-4V and Gemini Pro in 6 benchmarks** We release InternLM-XComposer2 series in three versions: * **InternLM-XComposer2-4KHD-7B** 🤗: The high-resolution multi-task trained VLLM model with InternLM-7B as the initialization of the LLM for _High-resolution understanding_ , _VL benchmarks_ and _AI assistant_. * **InternLM-XComposer2-VL-7B** 🤗 : The multi-task trained VLLM model with InternLM-7B as the initialization of the LLM for _VL benchmarks_ and _AI assistant_. **It ranks as the most powerful vision-language model based on 7B-parameter level LLMs, leading across 13 benchmarks.** * **InternLM-XComposer2-VL-1.8B** 🤗 : A lightweight version of InternLM-XComposer2-VL based on InternLM-1.8B. * **InternLM-XComposer2-7B** 🤗: The further instruction tuned VLLM for _Interleaved Text-Image Composition_ with free-form inputs. Please refer to Technical Report and 4KHD Technical Reportfor more details.
dash-infer
DashInfer is a C++ runtime tool designed to deliver production-level implementations highly optimized for various hardware architectures, including x86 and ARMv9. It supports Continuous Batching and NUMA-Aware capabilities for CPU, and can fully utilize modern server-grade CPUs to host large language models (LLMs) up to 14B in size. With lightweight architecture, high precision, support for mainstream open-source LLMs, post-training quantization, optimized computation kernels, NUMA-aware design, and multi-language API interfaces, DashInfer provides a versatile solution for efficient inference tasks. It supports x86 CPUs with AVX2 instruction set and ARMv9 CPUs with SVE instruction set, along with various data types like FP32, BF16, and InstantQuant. DashInfer also offers single-NUMA and multi-NUMA architectures for model inference, with detailed performance tests and inference accuracy evaluations available. The tool is supported on mainstream Linux server operating systems and provides documentation and examples for easy integration and usage.
redis-ai-resources
A curated repository of code recipes, demos, and resources for basic and advanced Redis use cases in the AI ecosystem. It includes demos for ArxivChatGuru, Redis VSS, Vertex AI & Redis, Agentic RAG, ArXiv Search, and Product Search. Recipes cover topics like Getting started with RAG, Semantic Cache, Advanced RAG, and Recommendation systems. The repository also provides integrations/tools like RedisVL, AWS Bedrock, LangChain Python, LangChain JS, LlamaIndex, Semantic Kernel, RelevanceAI, and DocArray. Additional content includes blog posts, talks, reviews, and documentation related to Vector Similarity Search, AI-Powered Document Search, Vector Databases, Real-Time Product Recommendations, and more. Benchmarks compare Redis against other Vector Databases and ANN benchmarks. Documentation includes QuickStart guides, official literature for Vector Similarity Search, Redis-py client library docs, Redis Stack documentation, and Redis client list.
CuMo
CuMo is a project focused on scaling multimodal Large Language Models (LLMs) with Co-Upcycled Mixture-of-Experts. It introduces CuMo, which incorporates Co-upcycled Top-K sparsely-gated Mixture-of-experts blocks into the vision encoder and the MLP connector, enhancing the capabilities of multimodal LLMs. The project adopts a three-stage training approach with auxiliary losses to stabilize the training process and maintain a balanced loading of experts. CuMo achieves comparable performance to other state-of-the-art multimodal LLMs on various Visual Question Answering (VQA) and visual-instruction-following benchmarks.
stockbot-on-groq
StockBot Powered by Groq is an AI-powered chatbot that provides lightning-fast responses with live interactive stock charts, financial data, news, screeners, and more. Leveraging Groq's speed and Vercel's AI SDK, StockBot offers real-time conversation with natural language processing, interactive TradingView charts, adaptive interfaces, and multi-asset market coverage. It is designed for entertainment and instructional use, not for investment advice.
MiniAI-Face-Recognition-LivenessDetection-AndroidSDK
MiniAiLive provides system integrators with fast, flexible and extremely precise facial recognition with 3D passive face liveness detection (face anti-spoofing) that can be deployed across a number of scenarios, including security, access control, public safety, fintech, smart retail and home protection.
azure-search-vector-samples
This repository provides code samples in Python, C#, REST, and JavaScript for vector support in Azure AI Search. It includes demos for various languages showcasing vectorization of data, creating indexes, and querying vector data. Additionally, it offers tools like Azure AI Search Lab for experimenting with AI-enabled search scenarios in Azure and templates for deploying custom chat-with-your-data solutions. The repository also features documentation on vector search, hybrid search, creating and querying vector indexes, and REST API references for Azure AI Search and Azure OpenAI Service.
langtest
LangTest is a comprehensive evaluation library for custom LLM and NLP models. It aims to deliver safe and effective language models by providing tools to test model quality, augment training data, and support popular NLP frameworks. LangTest comes with benchmark datasets to challenge and enhance language models, ensuring peak performance in various linguistic tasks. The tool offers more than 60 distinct types of tests with just one line of code, covering aspects like robustness, bias, representation, fairness, and accuracy. It supports testing LLMS for question answering, toxicity, clinical tests, legal support, factuality, sycophancy, and summarization.
Awesome-CVPR2024-ECCV2024-AIGC
A Collection of Papers and Codes for CVPR 2024 AIGC. This repository compiles and organizes research papers and code related to CVPR 2024 and ECCV 2024 AIGC (Artificial Intelligence and Graphics Computing). It serves as a valuable resource for individuals interested in the latest advancements in the field of computer vision and artificial intelligence. Users can find a curated list of papers and accompanying code repositories for further exploration and research. The repository encourages collaboration and contributions from the community through stars, forks, and pull requests.
generative-ai-cdk-constructs
The AWS Generative AI Constructs Library is an open-source extension of the AWS Cloud Development Kit (AWS CDK) that provides multi-service, well-architected patterns for quickly defining solutions in code to create predictable and repeatable infrastructure, called constructs. The goal of AWS Generative AI CDK Constructs is to help developers build generative AI solutions using pattern-based definitions for their architecture. The patterns defined in AWS Generative AI CDK Constructs are high level, multi-service abstractions of AWS CDK constructs that have default configurations based on well-architected best practices. The library is organized into logical modules using object-oriented techniques to create each architectural pattern model.
MeloTTS
MeloTTS is a high-quality multi-lingual text-to-speech library by MyShell.ai. It supports various languages including English (American, British, Indian, Australian), Spanish, French, Chinese, Japanese, and Korean. The Chinese speaker also supports mixed Chinese and English. The library is fast enough for CPU real-time inference and offers features like using without installation, local installation, and training on custom datasets. The Python API and model cards are available in the repository and on HuggingFace. The community can join the Discord channel for discussions and collaboration opportunities. Contributions are welcome, and the library is under the MIT License. MeloTTS is based on TTS, VITS, VITS2, and Bert-VITS2.
LLMs-from-scratch
This repository contains the code for coding, pretraining, and finetuning a GPT-like LLM and is the official code repository for the book Build a Large Language Model (From Scratch). In _Build a Large Language Model (From Scratch)_, you'll discover how LLMs work from the inside out. In this book, I'll guide you step by step through creating your own LLM, explaining each stage with clear text, diagrams, and examples. The method described in this book for training and developing your own small-but-functional model for educational purposes mirrors the approach used in creating large-scale foundational models such as those behind ChatGPT.
For similar tasks
Awesome-LLM
Awesome-LLM is a curated list of resources related to large language models, focusing on papers, projects, frameworks, tools, tutorials, courses, opinions, and other useful resources in the field. It covers trending LLM projects, milestone papers, other papers, open LLM projects, LLM training frameworks, LLM evaluation frameworks, tools for deploying LLM, prompting libraries & tools, tutorials, courses, books, and opinions. The repository provides a comprehensive overview of the latest advancements and resources in the field of large language models.
flashinfer
FlashInfer is a library for Language Languages Models that provides high-performance implementation of LLM GPU kernels such as FlashAttention, PageAttention and LoRA. FlashInfer focus on LLM serving and inference, and delivers state-the-art performance across diverse scenarios.
langcorn
LangCorn is an API server that enables you to serve LangChain models and pipelines with ease, leveraging the power of FastAPI for a robust and efficient experience. It offers features such as easy deployment of LangChain models and pipelines, ready-to-use authentication functionality, high-performance FastAPI framework for serving requests, scalability and robustness for language processing applications, support for custom pipelines and processing, well-documented RESTful API endpoints, and asynchronous processing for faster response times.
ChuanhuChatGPT
Chuanhu Chat is a user-friendly web graphical interface that provides various additional features for ChatGPT and other language models. It supports GPT-4, file-based question answering, local deployment of language models, online search, agent assistant, and fine-tuning. The tool offers a range of functionalities including auto-solving questions, online searching with network support, knowledge base for quick reading, local deployment of language models, GPT 3.5 fine-tuning, and custom model integration. It also features system prompts for effective role-playing, basic conversation capabilities with options to regenerate or delete dialogues, conversation history management with auto-saving and search functionalities, and a visually appealing user experience with themes, dark mode, LaTeX rendering, and PWA application support.
dash-infer
DashInfer is a C++ runtime tool designed to deliver production-level implementations highly optimized for various hardware architectures, including x86 and ARMv9. It supports Continuous Batching and NUMA-Aware capabilities for CPU, and can fully utilize modern server-grade CPUs to host large language models (LLMs) up to 14B in size. With lightweight architecture, high precision, support for mainstream open-source LLMs, post-training quantization, optimized computation kernels, NUMA-aware design, and multi-language API interfaces, DashInfer provides a versatile solution for efficient inference tasks. It supports x86 CPUs with AVX2 instruction set and ARMv9 CPUs with SVE instruction set, along with various data types like FP32, BF16, and InstantQuant. DashInfer also offers single-NUMA and multi-NUMA architectures for model inference, with detailed performance tests and inference accuracy evaluations available. The tool is supported on mainstream Linux server operating systems and provides documentation and examples for easy integration and usage.
awesome-mobile-llm
Awesome Mobile LLMs is a curated list of Large Language Models (LLMs) and related studies focused on mobile and embedded hardware. The repository includes information on various LLM models, deployment frameworks, benchmarking efforts, applications, multimodal LLMs, surveys on efficient LLMs, training LLMs on device, mobile-related use-cases, industry announcements, and related repositories. It aims to be a valuable resource for researchers, engineers, and practitioners interested in mobile LLMs.
hallucination-leaderboard
This leaderboard evaluates the hallucination rate of various Large Language Models (LLMs) when summarizing documents. It uses a model trained by Vectara to detect hallucinations in LLM outputs. The leaderboard includes models from OpenAI, Anthropic, Google, Microsoft, Amazon, and others. The evaluation is based on 831 documents that were summarized by all the models. The leaderboard shows the hallucination rate, factual consistency rate, answer rate, and average summary length for each model.
h2o-llmstudio
H2O LLM Studio is a framework and no-code GUI designed for fine-tuning state-of-the-art large language models (LLMs). With H2O LLM Studio, you can easily and effectively fine-tune LLMs without the need for any coding experience. The GUI is specially designed for large language models, and you can finetune any LLM using a large variety of hyperparameters. You can also use recent finetuning techniques such as Low-Rank Adaptation (LoRA) and 8-bit model training with a low memory footprint. Additionally, you can use Reinforcement Learning (RL) to finetune your model (experimental), use advanced evaluation metrics to judge generated answers by the model, track and compare your model performance visually, and easily export your model to the Hugging Face Hub and share it with the community.
For similar jobs
weave
Weave is a toolkit for developing Generative AI applications, built by Weights & Biases. With Weave, you can log and debug language model inputs, outputs, and traces; build rigorous, apples-to-apples evaluations for language model use cases; and organize all the information generated across the LLM workflow, from experimentation to evaluations to production. Weave aims to bring rigor, best-practices, and composability to the inherently experimental process of developing Generative AI software, without introducing cognitive overhead.
LLMStack
LLMStack is a no-code platform for building generative AI agents, workflows, and chatbots. It allows users to connect their own data, internal tools, and GPT-powered models without any coding experience. LLMStack can be deployed to the cloud or on-premise and can be accessed via HTTP API or triggered from Slack or Discord.
VisionCraft
The VisionCraft API is a free API for using over 100 different AI models. From images to sound.
kaito
Kaito is an operator that automates the AI/ML inference model deployment in a Kubernetes cluster. It manages large model files using container images, avoids tuning deployment parameters to fit GPU hardware by providing preset configurations, auto-provisions GPU nodes based on model requirements, and hosts large model images in the public Microsoft Container Registry (MCR) if the license allows. Using Kaito, the workflow of onboarding large AI inference models in Kubernetes is largely simplified.
PyRIT
PyRIT is an open access automation framework designed to empower security professionals and ML engineers to red team foundation models and their applications. It automates AI Red Teaming tasks to allow operators to focus on more complicated and time-consuming tasks and can also identify security harms such as misuse (e.g., malware generation, jailbreaking), and privacy harms (e.g., identity theft). The goal is to allow researchers to have a baseline of how well their model and entire inference pipeline is doing against different harm categories and to be able to compare that baseline to future iterations of their model. This allows them to have empirical data on how well their model is doing today, and detect any degradation of performance based on future improvements.
tabby
Tabby is a self-hosted AI coding assistant, offering an open-source and on-premises alternative to GitHub Copilot. It boasts several key features: * Self-contained, with no need for a DBMS or cloud service. * OpenAPI interface, easy to integrate with existing infrastructure (e.g Cloud IDE). * Supports consumer-grade GPUs.
spear
SPEAR (Simulator for Photorealistic Embodied AI Research) is a powerful tool for training embodied agents. It features 300 unique virtual indoor environments with 2,566 unique rooms and 17,234 unique objects that can be manipulated individually. Each environment is designed by a professional artist and features detailed geometry, photorealistic materials, and a unique floor plan and object layout. SPEAR is implemented as Unreal Engine assets and provides an OpenAI Gym interface for interacting with the environments via Python.
Magick
Magick is a groundbreaking visual AIDE (Artificial Intelligence Development Environment) for no-code data pipelines and multimodal agents. Magick can connect to other services and comes with nodes and templates well-suited for intelligent agents, chatbots, complex reasoning systems and realistic characters.