Awesome-AISourceHub
本仓库收集AI科技领域高质量信息源。 可以起到一个同步信息源的作用,避免信息差和信息茧房。
Stars: 679
Awesome-AISourceHub is a repository that collects high-quality information sources in the field of AI technology. It serves as a synchronized source of information to avoid information gaps and information silos. The repository aims to provide valuable resources for individuals such as AI book authors, enterprise decision-makers, and tool developers who frequently use Twitter to share insights and updates related to AI advancements. The platform emphasizes the importance of accessing information closer to the source for better quality content. Users can contribute their own high-quality information sources to the repository by following specific steps outlined in the contribution guidelines. The repository covers various platforms such as Twitter, public accounts, knowledge planets, podcasts, blogs, websites, YouTube channels, and more, offering a comprehensive collection of AI-related resources for individuals interested in staying updated with the latest trends and developments in the AI field.
README:
本仓库收集 AI 科技领域高质量信息源。 可以起到一个同步信息源的作用,避免信息差和信息茧房。
在线网址:Ai Source Hub
信息源越接近于源头的内容越好呢?下面这张图可以简单解释 信息流垃圾理论简图 你认同这个图的顺序吗? (小红书里面的一手信息还是挺多的,只不过没有办法贴上原文链接,是个硬伤)
在这波人工智能浪潮中 Twitter 为什么重要?
AI 领域的许多书籍作者、企业决策者和工具开发者经常使用 Twitter 并在此发表言论 Twitter 聚集了大量的天使投资人、风险投资人和记者,他们源源不断地提供着有价值的背景信息。因此,在 AI 的一波波浪潮中,Twitter 始终拥有着自己的「寓教于乐的小世界」。但 2022 年,ChatGPT 的诞生让 Twitter 在这场 AI 热潮中显得尤为重要 —— 人们在 Twitter 上大量分享他们使用这个工具的过程,关于 Generative AI 和 GPT-3 /3.5 的看法及围绕它们而产生的行为 —— 无论炒作与否。
如何在 Twitter 筛选优质信息流?
推特有各种大佬、各大官媒和民间高手。这些信息的全面性和时效性都非常好,只要用好关注列表,你基本不会错过。
1.首先要脱离推荐算法的圈养。把推特的时间线从【推荐】改成按【时间顺序】, 这样时效性会好很多。
2.找一个还不错的参考对象。可以是任何 AI 相关的账号,知名大 V 最好。从关注列表里面深挖你感兴趣的账号,点击关注。或者一次性的全部点击关注,后面看到不喜欢的内容再去取关就好。
平台:知乎博主、B 站 up 主、油管 Up、知识星球、电报、公众号、推特大 V、垂类 AI 网站
挑选标准
- 有干货
- 和人工智能、科技相关
了解一个领域的常见技巧:
1.谷歌学术搜关键词:找到 survey,或者引用数比较高的论文,然后用 ReadPaper 阅读和翻译。
2.如果是最新的论文:Arxiv 搜关键词。
3.看 PaperWithCode 的排行榜,比如: https://paperswithcode.com/sota
4.如果是代码复现,可以 Github 搜:awesome+xxx,一般会有大佬给你整理好相关的资料。
欢迎共享你的高质量信息源!请按照以下步骤操作:
- Fork 仓库 - 点击此页面右上角的 "Fork" 按钮,将此仓库的副本创建在你的 GitHub 帐户上。
- 克隆仓库 - 使用 git clone 命令将仓库下载到你的本地计算机。
- 创建新分支 - 创建一个新分支,你将在其中进行更改。
- 进行你的更改 - 在适当的类别中添加你的资源。请提供简短的描述和资源链接。
- 提交并推送你的更改 - 使用 git commit 命令保存你的更改,使用 git push 将它们上传到 GitHub。
- 打开拉取请求 - 转到原始仓库的 "Pull Requests" 选项卡,然后点击 "New pull request"。选择你的 fork 和你在其上进行更改的分支。点击 "Create pull request",并简短描述你的更改。
当然你也可以通过下面链接来贡献你的信息源,审核过后会同步到仓库。
平台链接 | 备注 |
---|---|
推特 | 人工智能浪潮中信息前沿 |
公众号 | 微信媒体 |
知识星球 | 干货比较多大都会开星球,但是也有很多割韭菜的 |
播客 | 流行于欧美,音频方式分享知识 |
Arxiv | 开放免费的科学研究论文预印本库,主要面向物理学、数学、计算机科学、经济学等领域 |
大 V | 备注 |
---|---|
Twitter threads | 一个 Twitter 排行榜列表 |
OpenAI | OpenAI 官方号,发布最强 AI 模型最新消息 |
Sam Altman | OpenAI 创始人,YC 前主席 |
Elon Musk | 钢铁侠马斯克 |
Yann LeCun | Meta 前首席科学家 |
Andrej Karpathy | 前特斯拉的 AI 总监,也是 OpenAI 的创始团队成员和研究科学家 |
François Chollet | 推特界最会研究人工智能的一位网红科学家,Keras 创始人 |
李飞飞 | 是斯坦福大学人工智能实验室的主任,她是计算机视觉和人工智能领域的领先专家之一 |
Soumith Chintala | FAIR 研究工程师、深度学习框架 PyTorch 创建者之一 |
Sebastian Raschka | 经常分享论文解读 |
clem | HuggingFace 创始人兼 CEO |
Kevin Patrick Murphy | 谷歌大脑/深度学习的研究科学家。 |
Mark Chen | OpenAI 的研究部门负责人 |
Connor Holmes | Sora 系统领导 |
Tim Brooks | Sora 研究领导 |
AK | 知名博主 |
Jürgen Schmidhuber | meta-learning (1987), GANs (1990), Transformers (1991), very deep learning (1991) 发明者 |
宝玉 | 推特宝玉老师,知名博主 |
Jim Fan | Jim Fan, Nvidia 的科学家,经常分享 AI 相关 |
吴恩达 | 吴恩达, Coursera 联合创始人、斯坦福大学兼职教授、baidu AI 团队/谷歌大脑前负责人 |
歸藏 | 歸藏,经常分享 AI 最新资讯 |
Gorden Sun | 只发 AI 相关信息的产品经理,维护 AI 日报 |
Quo Le | Goole 大脑首席科学家,经常分享 Google 最新研究成果 |
Teslascope | 特斯拉车辆所有最新消息 |
Binyuan Hui | 阿里巴巴Qwen团队的NLP研究员 |
Tony Z. Zhao | Meta GenAI的研究科学家 |
Eric Jang | AI is Good for You作者 |
Zipeng Fu | 斯坦福人工智能与机器人博士,分享从事的移动机器人最新进展 |
平台链接 | 备注 |
---|---|
42 章经 | 直接访谈 AI 领域最一线的大佬,纯干货 |
机器人大讲堂 | 清华孙富春老师团队维护的平台,机器人必关注,干货多,软广少。 |
九章智驾 | 自动驾驶领域的“顶会” |
我爱计算机视觉 | 主要会介绍一些最新论文解读。也有一些软广 |
量子位 | 别管什么标题党,分享一些最新的比较火的资讯 |
机器之心 | 别管什么标题党,分享一些最新的比较火的资讯 |
新智元 | 别管什么标题党,分享一些最新的比较火的资讯 |
Alwalker | cv 相关的论文分享,干货比例高。 |
cver | 论文解读,开星球了,软广多。 |
计算机视觉 life | 主要是自动驾驶,也开星球了,软广多 |
游戏葡萄 | 游戏领域:干货比较多,平台能接触到很多一线大厂的资源。 |
老刘说 NLP | 原创干货比较多,少量付费,以及会维护一个付费社群,作者本身就是知识图谱和 NLP 专业出身,目前在 360 工作,所以信息量比营销号会好不少。 |
JioNLP | 作者目前在昆仑万维 LLM 团队,喜欢开源,喜欢分享各种 AI 知识,干货比例会比较高。 |
NewBeeNLP | nlp 相关内容,最新学术、技术贴,以及一些付费知识,广告。公众号的生态是这样的。大家按需关注。 |
GithubDaily | 会介绍一些 Github 热门的项目,现在主要是 LLM 相关的内容,有点标题党,有广告,有知识星球付费。大家按需关注。 |
夕小瑶科技说 | 弱化版的三顶会,营销内容和比例大于三顶会。 |
36 氪 | 和 LLM、AI 关系没那么大,但也是传统科技媒体了。 |
Z Potentials | LLM,AIGC 创业投资相关资讯。 |
爱可可爱生活 | 其实微博才是大佬的主战场,大佬会分享一些最新的论文,如果有点评就更好了。 |
数字生命卡兹克 | 各种 AI 原创应用分享,以及新 AI 应用的介绍。有软广。 |
李 rumor | 强化,大模型相关资讯分享,招聘信息发布,以及广告。 |
AI 科技评论 | CSDN 旗下的公众号,相当于是弱版的三顶会。 |
将门创投 | 干货较多,但更新频率不高,能有办法直接邀请论文作者做免费分享。 |
强化学习实验室 | 天大郝建业老师组的知识分享平台.他们分享的论文都比较重要,他们写的帖子也非常深入浅出。输出频率不算高,但比较稳定。 |
硅星人Pro | 会采访一些创业公司和科技公司,也分享一些 AI 相关的资讯,除了头条外另外的转载比例较高。 |
平台链接 | 备注 |
---|---|
GitHub Trending | Github 热榜,程序员必刷,祝大家早日登榜! |
Cool Papers - Immersive Paper Discover | 苏剑林大佬开发的一个刷论文的网站 |
科学空间 | 苏佬开发的 |
Daily Papers - Hugging Face | 由 Huggingface 的 AK 大佬亲自维护的一个论文日榜,但对中文用户不太友好。 |
MITNews | 应该是国内科技自媒体的上游信息源了。 |
paperswithcode.com/sota | 一些领域的 Sota 方法排行榜。 |
菜鸟教程 | 学的不仅是技术,更是梦想!:拓展技术栈比较好的网站 |
LLM-Arxiv | 关于 LLM 的最新 Arxiv 论文列表,有空刷一下。这是原始信息源,是 Cool Papers 的简版 |
ShowMeAl | 乔 sir 维护的 Al 日报。一个 AI 信息的整合平台。 |
Futurepedia | AI 应用目录,每日更新。 |
Reddit ChatGPT | 成立于 2022 年 12 月, 目前观看次数最多的人工智能相关社区,拥有超过 350 万订阅者 |
Reddit artificial | Reddit 人工智能社区,73 万订阅 |
GiantPandaCV | 分享计算机视觉的干货,论文解读 |
平台链接 | 备注 |
---|---|
AI 局内人 |
平台链接 | 备注 |
---|---|
OpenAI Blog | OpenAI 的官方博客,提供研究更新和深度分析,提供深度学习和人工智能相关的深度文章。 |
Google Blog | Google AI 团队的官方博客,介绍最新的研究进展和应用,提供人工智能和机器学习的新闻和研究。 |
Deepmind Blog | DeepMind 的官方博客,介绍他们的研究成果和最新进展,提供人工智能和深度学习的最新研究成果。 |
Meta Blog | Facebook AI 团队的官方博客,分享他们的研究和新的 AI 技术,提供 AI 的最新研究成果和应用。 |
Nvidia Blog | 英伟达公司的官方 AI 博客,分享他们在 AI 和深度学习领域的最新进展和研究,提供了大量关于硬件加速、AI 应用和深度学习的深度文章。 |
Microsoft Blog | 微软公司的官方 AI 博客,分享他们在 AI 和机器学习领域的最新研究和进展,提供了大量关于 AI 技术和应用的深度文章。 |
Geoffrey Hinton | Geoffrey Hinton,被誉为“深度学习之父”,他的个人主页分享了他在 AI 领域的研究和成果,提供深度学习和人工智能的深度文章。 |
Jason Brownlee | Jason Brownlee 的博客,提供机器学习和深度学习的教程和文章,提供机器学习和深度学习的教程和文章。 |
Li'Log:lilian | 基本上可以把一个领域,系统的梳理清楚。通俗易懂,深入浅出! |
博主 | 备注 |
---|---|
Hugging Face | Huggingface face 官方号,会分享一些基础技术贴,工作日更新频率比较高。 |
苏剑林 | 苏剑林:苏佬去年从追一去月之暗面了。玩知乎的,苏佬应该不用多介绍了。虽然大本营在他自己的科学空间,后面也会介绍,但知乎刷起来会更方便一些。唯一难受的是,苏佬很多帖子都需要一定的数理基础才能看懂。 |
李沐 | 沐神,深度学习领域的重要人物,他的博客提供了许多有价值的深度学习和 AI 相关文章,B 站 有他的系列课程。 |
李博杰 | 科大博士,前华为天少。师兄的知乎分享频率非常高,质量同样高,长文干货贴+脑洞+个人见解。领域几乎包含全 AI 领域,值得大家关注。 |
李 rumor | 北航,现在美团做 RLHF。其实公众号是她的主战场会分享一些有趣的 AI 知识。但感觉在美团做 RLHF,已经占用了她太多的时间了,更新频率没那么高了。 |
刘聪 NLP | 《ChatGPT 原理与实战》作者。LLM 的学术和行业信息。 |
苏洋 | 大佬的经历一长串,泛 AI 领域的资讯,关注就行了。 |
田渊栋 | MetaFAIR 研究院研究员,CMU 机器人博士。之前做 MARL,做长文本小说生成,以及现在做 LLM,大佬非常强,在知乎的干货输出也很多,直接关注就行。 |
毛航宇 | 北大博士,前华为诺亚,现商汤。之前做 MARL,现在弃坑,去做 LLMAgent 了,主要分享这两个方向的学术进展,个人见解,以及相关八卦。 |
信息门下跑狗 | 北大跑姐,重拳出击学术造假,但最近更新频率也下降了。 |
白小鱼 | 上交。联邦学习相关干货知识分享,以及推荐各种 LLM 相关讯息。 |
桔了个仔 | AI 领域大佬答主了。泛 AI 领域的咨询。 |
Al 小舟哥 | Huggingface 的大佬。但微信朋友圈的资讯都是一手最新的。 |
王鹏程 | 中科大。博主的想法会分享最新 arxiv 论文的图文介绍,刷起来很舒服。建议关注。 |
何枝 | 电子科大,现在字节。大佬是分享 RLHF 教程和代码讲解火出圈的,做相关工作的可以关注一下。不过在字节工作,应该是比较难输出了 |
东林钟声 | 华科博士。博士方向是 RL+灵巧手。现在主要研究 LLM+灵巧手。大佬的干货比例和更新频率都比较好。 |
YY 硕 | 卡内基梅隆大学博士。机器人领域的优质答主,关注就完事儿了。输出频率不高,但每个帖子都值得认真阅读。 |
李淼 robot | EPFL(瑞士洛桑联邦理工).博士,现在武汉某高校(隐约记得是武大)。李老师是机器人领域的优质答主,之前有比较多的教程贴,现在更新频率较低。 |
丁霄汉 | 清华博士,现在腾讯 AIlab。主要分享一些关于学术写作、审稿、cv、AI 圈八卦和暴论。阅读起来比较开心 |
电光幻影炼金术 | 上交博士,大佬的方向很杂,我刷了一圈都定位到具体专业。主要分享全领域学术进展、读研读博教程(包括写作、投稿、审稿、师生关系等),更新频率比较高。 |
平台链接 | 备注 |
---|---|
花儿不哭 | RVC 变声器创始人 GPT-sovits 作者,关注声音复刻的可以关注 |
风信子的猫 Redamancy | 数字人对话系统 Linly-Talker。 |
李自然说 | AI 连续创业者,对业界的思考很有价值。 |
差评君 | 一些 AI 领域评测和分享,范围较广 |
耿同学讲故事 | 北航老哥,战斗力非常猛,下饭利器! |
机器人科学与技术 | 会分享最新的一些国际大组的机器人演示 demo,但没有做更多点评。 |
图灵的猫 | 下饭视频看。 |
小约翰可汗 | 说到下饭视频,必须得优可汗 |
来自星星的何教授 | 室温超导+学术八卦跑的最快的 up |
落英行者 | 各种尖端行业深度解析,很好奇素材都是哪儿来的。 |
萌萌战队 | 空气动力学,激波!最像营销号的干货号。 |
二进制哈士奇 | 学术版 GPT 的作者,分享学术版 GPT 最新的功能。 |
浪子之心科技 | 数字人,AIGC 开源项目介绍。 |
李鲁鲁 | AIGC、LLM 角色扮演、论文分享,大佬的知乎我忘记贴了! |
秋葉 aaaki | AI 绘图界的喂饭级 Up,狠狠关注! |
五里墩茶社 | 最新的 LLM 相关工具分享,很多新工具都有新手入门,值得关注。 |
ShusenWang | 王老师的强化学习课和推荐系统课,都是免费的,讲的非常好! |
王树义老师 | 一些新 AI 工具的使用分享。比较适合小白。 |
霍华德 vlog | 华叔出走知乎,去了 B 站,现在主要分享 rwkv 的内容,以及一些泛 AI 的信息。 |
跟李沐学 AI | 深度学习论文解读和教程,关注就行,最近老师创业去了,断更了。 |
平台链接 | 备注 |
---|---|
李宏毅 | 台湾科技大学的知名 AI 研究者,提供深度学习和人工智能的深度文章和视频。 |
平台链接 | 备注 |
---|---|
ChatGPT / AI 新闻聚合 | 汇集全网 ChatGPT/AI 新闻 |
极客分享 | 分享各种高质量网站、工具、APP、开源项目等一切好玩的东西 🚀 |
AI 探索指南 | 关于 ChatGPT、Bard 等人工智能、思维方式、知识拓展,能力提升等。 |
AI News | 记录 AI 业界大新闻和最有趣的新产品 |
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for Awesome-AISourceHub
Similar Open Source Tools
Awesome-AISourceHub
Awesome-AISourceHub is a repository that collects high-quality information sources in the field of AI technology. It serves as a synchronized source of information to avoid information gaps and information silos. The repository aims to provide valuable resources for individuals such as AI book authors, enterprise decision-makers, and tool developers who frequently use Twitter to share insights and updates related to AI advancements. The platform emphasizes the importance of accessing information closer to the source for better quality content. Users can contribute their own high-quality information sources to the repository by following specific steps outlined in the contribution guidelines. The repository covers various platforms such as Twitter, public accounts, knowledge planets, podcasts, blogs, websites, YouTube channels, and more, offering a comprehensive collection of AI-related resources for individuals interested in staying updated with the latest trends and developments in the AI field.
linktre-tools
The 'linktre-tools' repository is a collection of tools and resources for independent developers, AI products, cross-border e-commerce, and self-media office assistance. It aims to provide a curated list of tools and products in these areas. Users are encouraged to contribute by submitting pull requests and raising issues for continuous updates. The repository covers a wide range of topics including AI tools, independent development tools, popular AI products, tools for web development, online tools, media operations, and cross-border e-commerce resources.
Awesome-AGI
Awesome-AGI is a curated list of resources related to Artificial General Intelligence (AGI), including models, pipelines, applications, and concepts. It provides a comprehensive overview of the current state of AGI research and development, covering various aspects such as model training, fine-tuning, deployment, and applications in different domains. The repository also includes resources on prompt engineering, RLHF, LLM vocabulary expansion, long text generation, hallucination mitigation, controllability and safety, and text detection. It serves as a valuable resource for researchers, practitioners, and anyone interested in the field of AGI.
indie-hacker-tools-plus
Indie Hacker Tools Plus is a curated repository of essential tools and technology stacks for independent developers. The repository aims to help developers enhance efficiency, save costs, and mitigate risks by using popular and validated tools. It provides a collection of tools recognized by the industry to empower developers with the most refined technical support. Developers can contribute by submitting articles, software, or resources through issues or pull requests.
ML-AI-2-LT
ML-AI-2-LT is a repository that serves as a glossary for machine learning and deep learning concepts. It contains translations and explanations of various terms related to artificial intelligence, including definitions and notes. Users can contribute by filling issues for unclear concepts or by submitting pull requests with suggestions or additions. The repository aims to provide a comprehensive resource for understanding key terminology in the field of AI and machine learning.
DeepSparkHub
DeepSparkHub is a repository that curates hundreds of application algorithms and models covering various fields in AI and general computing. It supports mainstream intelligent computing scenarios in markets such as smart cities, digital individuals, healthcare, education, communication, energy, and more. The repository provides a wide range of models for tasks such as computer vision, face detection, face recognition, instance segmentation, image generation, knowledge distillation, network pruning, object detection, 3D object detection, OCR, pose estimation, self-supervised learning, semantic segmentation, super resolution, tracking, traffic forecast, GNN, HPC, methodology, multimodal, NLP, recommendation, reinforcement learning, speech recognition, speech synthesis, and 3D reconstruction.
PaddleScience
PaddleScience is a scientific computing suite developed based on the deep learning framework PaddlePaddle. It utilizes the learning ability of deep neural networks and the automatic (higher-order) differentiation mechanism of PaddlePaddle to solve problems in physics, chemistry, meteorology, and other fields. It supports three solving methods: physics mechanism-driven, data-driven, and mathematical fusion, and provides basic APIs and detailed documentation for users to use and further develop.
AIProductHome
AI Product Home is a repository dedicated to collecting various AI commercial or open-source products. It provides assistance in submitting issues, self-recommendation, correcting resources, and more. The repository also features AI tools like Build Naidia, Autopod, Rytr, Mubert, and a virtual town driven by AI. It includes sections for AI models, chat dialogues, AI assistants, code assistance, artistic creation, content creation, and more. The repository covers a wide range of AI-related tools and resources for users interested in AI products and services.
LLM-for-Healthcare
The repository 'LLM-for-Healthcare' provides a comprehensive survey of large language models (LLMs) for healthcare, covering data, technology, applications, and accountability and ethics. It includes information on various LLM models, training data, evaluation methods, and computation costs. The repository also discusses tasks such as NER, text classification, question answering, dialogue systems, and generation of medical reports from images in the healthcare domain.
BlossomLM
BlossomLM is a series of open-source conversational large language models. This project aims to provide a high-quality general-purpose SFT dataset in both Chinese and English, making fine-tuning accessible while also providing pre-trained model weights. **Hint**: BlossomLM is a personal non-commercial project.
MobileLLM
This repository contains the training code of MobileLLM, a language model optimized for on-device use cases with fewer than a billion parameters. It integrates SwiGLU activation function, deep and thin architectures, embedding sharing, and grouped-query attention to achieve high-quality LLMs. MobileLLM-125M/350M shows significant accuracy improvements over previous models on zero-shot commonsense reasoning tasks. The design philosophy scales effectively to larger models, with state-of-the-art results for MobileLLM-600M/1B/1.5B.
kumo-search
Kumo search is an end-to-end search engine framework that supports full-text search, inverted index, forward index, sorting, caching, hierarchical indexing, intervention system, feature collection, offline computation, storage system, and more. It runs on the EA (Elastic automic infrastructure architecture) platform, enabling engineering automation, service governance, real-time data, service degradation, and disaster recovery across multiple data centers and clusters. The framework aims to provide a ready-to-use search engine framework to help users quickly build their own search engines. Users can write business logic in Python using the AOT compiler in the project, which generates C++ code and binary dynamic libraries for rapid iteration of the search engine.
AlignBench
AlignBench is the first comprehensive evaluation benchmark for assessing the alignment level of Chinese large models across multiple dimensions. It includes introduction information, data, and code related to AlignBench. The benchmark aims to evaluate the alignment performance of Chinese large language models through a multi-dimensional and rule-calibrated evaluation method, enhancing reliability and interpretability.
Cool-GenAI-Fashion-Papers
Cool-GenAI-Fashion-Papers is a curated list of resources related to GenAI-Fashion, including papers, workshops, companies, and products. It covers a wide range of topics such as fashion design synthesis, outfit recommendation, fashion knowledge extraction, trend analysis, and more. The repository provides valuable insights and resources for researchers, industry professionals, and enthusiasts interested in the intersection of AI and fashion.
step_into_llm
The 'step_into_llm' repository is dedicated to the 昇思MindSpore technology open class, which focuses on exploring cutting-edge technologies, combining theory with practical applications, expert interpretations, open sharing, and empowering competitions. The repository contains course materials, including slides and code, for the ongoing second phase of the course. It covers various topics related to large language models (LLMs) such as Transformer, BERT, GPT, GPT2, and more. The course aims to guide developers interested in LLMs from theory to practical implementation, with a special emphasis on the development and application of large models.
AIFoundation
AIFoundation focuses on AI Foundation, large model systems. Large models optimize the performance of full-stack hardware and software based on AI clusters. The training process requires distributed parallelism, cluster communication algorithms, and continuous evolution in the field of large models such as intelligent agents. The course covers modules like AI chip principles, communication & storage, AI clusters, computing architecture, communication architecture, large model algorithms, training, inference, and analysis of hot technologies in the large model field.
For similar tasks
Awesome-AISourceHub
Awesome-AISourceHub is a repository that collects high-quality information sources in the field of AI technology. It serves as a synchronized source of information to avoid information gaps and information silos. The repository aims to provide valuable resources for individuals such as AI book authors, enterprise decision-makers, and tool developers who frequently use Twitter to share insights and updates related to AI advancements. The platform emphasizes the importance of accessing information closer to the source for better quality content. Users can contribute their own high-quality information sources to the repository by following specific steps outlined in the contribution guidelines. The repository covers various platforms such as Twitter, public accounts, knowledge planets, podcasts, blogs, websites, YouTube channels, and more, offering a comprehensive collection of AI-related resources for individuals interested in staying updated with the latest trends and developments in the AI field.
awesome-ai-newsletters
Awesome AI Newsletters is a curated list of AI-related newsletters that provide the latest news, trends, tools, and insights in the field of Artificial Intelligence. It includes a variety of newsletters covering general AI news, prompts for marketing and productivity, AI job opportunities, and newsletters tailored for professionals in the AI industry. Whether you are a beginner looking to stay updated on AI advancements or a professional seeking to enhance your knowledge and skills, this repository offers a collection of valuable resources to help you navigate the world of AI.
For similar jobs
NanoLLM
NanoLLM is a tool designed for optimized local inference for Large Language Models (LLMs) using HuggingFace-like APIs. It supports quantization, vision/language models, multimodal agents, speech, vector DB, and RAG. The tool aims to provide efficient and effective processing for LLMs on local devices, enhancing performance and usability for various AI applications.
mslearn-ai-fundamentals
This repository contains materials for the Microsoft Learn AI Fundamentals module. It covers the basics of artificial intelligence, machine learning, and data science. The content includes hands-on labs, interactive learning modules, and assessments to help learners understand key concepts and techniques in AI. Whether you are new to AI or looking to expand your knowledge, this module provides a comprehensive introduction to the fundamentals of AI.
awesome-ai-tools
Awesome AI Tools is a curated list of popular tools and resources for artificial intelligence enthusiasts. It includes a wide range of tools such as machine learning libraries, deep learning frameworks, data visualization tools, and natural language processing resources. Whether you are a beginner or an experienced AI practitioner, this repository aims to provide you with a comprehensive collection of tools to enhance your AI projects and research. Explore the list to discover new tools, stay updated with the latest advancements in AI technology, and find the right resources to support your AI endeavors.
go2coding.github.io
The go2coding.github.io repository is a collection of resources for AI enthusiasts, providing information on AI products, open-source projects, AI learning websites, and AI learning frameworks. It aims to help users stay updated on industry trends, learn from community projects, access learning resources, and understand and choose AI frameworks. The repository also includes instructions for local and external deployment of the project as a static website, with details on domain registration, hosting services, uploading static web pages, configuring domain resolution, and a visual guide to the AI tool navigation website. Additionally, it offers a platform for AI knowledge exchange through a QQ group and promotes AI tools through a WeChat public account.
AI-Notes
AI-Notes is a repository dedicated to practical applications of artificial intelligence and deep learning. It covers concepts such as data mining, machine learning, natural language processing, and AI. The repository contains Jupyter Notebook examples for hands-on learning and experimentation. It explores the development stages of AI, from narrow artificial intelligence to general artificial intelligence and superintelligence. The content delves into machine learning algorithms, deep learning techniques, and the impact of AI on various industries like autonomous driving and healthcare. The repository aims to provide a comprehensive understanding of AI technologies and their real-world applications.
promptpanel
Prompt Panel is a tool designed to accelerate the adoption of AI agents by providing a platform where users can run large language models across any inference provider, create custom agent plugins, and use their own data safely. The tool allows users to break free from walled-gardens and have full control over their models, conversations, and logic. With Prompt Panel, users can pair their data with any language model, online or offline, and customize the system to meet their unique business needs without any restrictions.
ai-demos
The 'ai-demos' repository is a collection of example code from presentations focusing on building with AI and LLMs. It serves as a resource for developers looking to explore practical applications of artificial intelligence in their projects. The code snippets showcase various techniques and approaches to leverage AI technologies effectively. The repository aims to inspire and educate developers on integrating AI solutions into their applications.
ai_summer
AI Summer is a repository focused on providing workshops and resources for developing foundational skills in generative AI models and transformer models. The repository offers practical applications for inferencing and training, with a specific emphasis on understanding and utilizing advanced AI chat models like BingGPT. Participants are encouraged to engage in interactive programming environments, decide on projects to work on, and actively participate in discussions and breakout rooms. The workshops cover topics such as generative AI models, retrieval-augmented generation, building AI solutions, and fine-tuning models. The goal is to equip individuals with the necessary skills to work with AI technologies effectively and securely, both locally and in the cloud.