dingo

dingo

Dingo: A Comprehensive Data Quality Evaluation Tool

Stars: 109

Visit
 screenshot

README:

pre-commit PyPI version Python versions License GitHub stars GitHub forks GitHub issues

English | 简体中文

Discord Hugging Face

Changelog

  • 2024/12/27: Project Initialization

Introduction

Dingo is a data quality evaluation tool that helps you automatically detect data quality issues in your datasets. Dingo provides a variety of built-in rules and model evaluation methods, and also supports custom evaluation methods. Dingo supports commonly used text datasets and multimodal datasets, including pre-training datasets, fine-tuning datasets, and evaluation datasets. In addition, Dingo supports multiple usage methods, including local CLI and SDK, making it easy to integrate into various evaluation platforms, such as OpenCompass.

Architecture Diagram

Architecture of dingo

Quick Start

Installation

pip install dingo-python

Example Use Cases

1. Evaluate Local Text File (Plaintext)

from dingo.io import InputArgs
from dingo.exec import Executor

# Evaluate a plaintext file
input_data = {
    "eval_group": "sft",          # Rule set for SFT data
    "input_path": "data.txt",      # Path to local text file
    "dataset": "local",
    "data_format": "plaintext",    # Format: plaintext
    "save_data": True              # Save evaluation results
}

input_args = InputArgs(**input_data)
executor = Executor.exec_map["local"](input_args)
result = executor.execute()
print(result)

2. Evaluate Hugging Face Dataset

from dingo.io import InputArgs
from dingo.exec import Executor

# Evaluate a dataset from Hugging Face
input_data = {
    "eval_group": "sft",           # Rule set for SFT data
    "input_path": "tatsu-lab/alpaca", # Dataset from Hugging Face
    "data_format": "plaintext",    # Format: plaintext
    "save_data": True              # Save evaluation results
}

input_args = InputArgs(**input_data)
executor = Executor.exec_map["local"](input_args)
result = executor.execute()
print(result)

3. Evaluate JSON/JSONL Format

from dingo.io import InputArgs
from dingo.exec import Executor

# Evaluate a JSON file
input_data = {
    "eval_group": "default",       # Default rule set
    "input_path": "data.json",     # Path to local JSON file
    "dataset": "local",
    "data_format": "json",         # Format: json
    "column_content": "text",      # Column containing the text to evaluate
    "save_data": True              # Save evaluation results
}

input_args = InputArgs(**input_data)
executor = Executor.exec_map["local"](input_args)
result = executor.execute()
print(result)

4. Using LLM for Evaluation

from dingo.io import InputArgs
from dingo.exec import Executor

# Evaluate using GPT model
input_data = {
    "input_path": "data.jsonl",    # Path to local JSONL file
    "dataset": "local",
    "data_format": "jsonl",
    "column_content": "content",
    "custom_config": {
        "prompt_list": ["PromptRepeat"],  # Prompt to use
        "llm_config": {
            "detect_text_quality": {
                "model": "gpt-4o",
                "key": "YOUR_API_KEY",
                "api_url": "https://api.openai.com/v1/chat/completions"
            }
        }
    }
}

input_args = InputArgs(**input_data)
executor = Executor.exec_map["local"](input_args)
result = executor.execute()
print(result)

Command Line Interface

Evaluate with Rule Sets

python -m dingo.run.cli --input_path data.txt --dataset local -e sft --data_format plaintext --save_data True

Evaluate with LLM (e.g., GPT-4o)

python -m dingo.run.cli --input_path data.json --dataset local -e openai --data_format json --column_content text --custom_config config_gpt.json --save_data True

Example config_gpt.json:

{
  "llm_config": {
    "openai": {
      "model": "gpt-4o",
      "key": "YOUR_API_KEY",
      "api_url": "https://api.openai.com/v1/chat/completions"
    }
  }
}

GUI Visualization

After evaluation (with save_data=True), a frontend page will be automatically generated. To manually start the frontend:

python -m dingo.run.vsl --input output_directory

Where output_directory contains the evaluation results with a summary.json file.

GUI output

Online Demo

Try Dingo on our online demo: (Hugging Face)🤗

Data Quality Metrics

Dingo classifies data quality issues into 7 dimensions of Quality Metrics. Each dimension can be evaluated using both rule-based methods and LLM-based prompts:

Quality Metric Description Rule Examples LLM Prompt Examples
COMPLETENESS Checks if data is incomplete or missing RuleColonEnd, RuleContentNull Evaluates if text abruptly ends with a colon or ellipsis, has mismatched parentheses, or missing critical components
EFFECTIVENESS Checks if data is meaningful and properly formatted RuleAbnormalChar, RuleHtmlEntity, RuleSpecialCharacter Detects garbled text, words stuck together without spaces, and text lacking proper punctuation
FLUENCY Checks if text is grammatically correct and reads naturally RuleAbnormalNumber, RuleNoPunc, RuleWordStuck Identifies excessively long words, text fragments without punctuation, or content with chaotic reading order
RELEVANCE Detects irrelevant content within the data RuleHeadWord variants for different languages Examines for irrelevant information like citation details, headers/footers, entity markers, HTML tags
SECURITY Identifies sensitive information or value conflicts RuleIDCard, RuleUnsafeWords Checks for personal information, and content related to gambling, pornography, political issues
SIMILARITY Detects repetitive or highly similar content RuleDocRepeat Evaluates text for consecutive repeated content or multiple occurrences of special characters
UNDERSTANDABILITY Assesses how easily data can be interpreted RuleCapitalWords Ensures LaTeX formulas and Markdown are correctly formatted, with proper segmentation and line breaks

LLM Quality Assessment

Dingo provides several LLM-based assessment methods defined by prompts in the dingo/model/prompt directory. These prompts are registered using the prompt_register decorator and can be combined with LLM models for quality evaluation:

Text Quality Assessment Prompts

Prompt Type Metric Description
TEXT_QUALITY_V2, TEXT_QUALITY_V3 Various quality dimensions Comprehensive text quality evaluation covering effectiveness, relevance, completeness, understandability, similarity, fluency, and security
QUALITY_BAD_EFFECTIVENESS Effectiveness Detects garbled text and anti-crawling content
QUALITY_BAD_SIMILARITY Similarity Identifies text repetition issues
WORD_STICK Fluency Checks for words stuck together without proper spacing
CODE_LIST_ISSUE Completeness Evaluates code blocks and list formatting issues
UNREAD_ISSUE Effectiveness Detects unreadable characters due to encoding issues

3H Assessment Prompts (Honest, Helpful, Harmless)

Prompt Type Metric Description
QUALITY_HONEST Honesty Evaluates if responses provide accurate information without fabrication or deception
QUALITY_HELPFUL Helpfulness Assesses if responses address questions directly and follow instructions appropriately
QUALITY_HARMLESS Harmlessness Checks if responses avoid harmful content, discriminatory language, and dangerous assistance

Domain-Specific Assessment Prompts

Prompt Type Metric Description
TEXT_QUALITY_KAOTI Exam question quality Specialized assessment for evaluating the quality of exam questions, focusing on formula rendering, table formatting, paragraph structure, and answer formatting
Html_Abstract HTML extraction quality Compares different methods of extracting Markdown from HTML, evaluating completeness, formatting accuracy, and semantic coherence

Classification Prompts

Prompt Type Metric Description
CLASSIFY_TOPIC Topic Categorization Classifies text into categories like language processing, writing, code, mathematics, role-play, or knowledge Q&A
CLASSIFY_QR Image Classification Identifies images as CAPTCHA, QR code, or normal images

Image Assessment Prompts

Prompt Type Metric Description
IMAGE_RELEVANCE Image Relevance Evaluates if an image matches reference image in terms of face count, feature details, and visual elements

Using LLM Assessment in Evaluation

To use these assessment prompts in your evaluations, specify them in your configuration:

input_data = {
    # Other parameters...
    "custom_config": {
        "prompt_list": ["QUALITY_BAD_SIMILARITY"],  # Specific prompt to use
        "llm_config": {
            "detect_text_quality": {  # LLM model to use
                "model": "gpt-4o",
                "key": "YOUR_API_KEY",
                "api_url": "https://api.openai.com/v1/chat/completions"
            }
        }
    }
}

You can customize these prompts to focus on specific quality dimensions or to adapt to particular domain requirements. When combined with appropriate LLM models, these prompts enable comprehensive evaluation of data quality across multiple dimensions.

Rule Groups

Dingo provides pre-configured rule groups for different types of datasets:

Group Use Case Example Rules
default General text quality RuleColonEnd, RuleContentNull, RuleDocRepeat, etc.
sft Fine-tuning datasets Rules from default plus RuleLineStartWithBulletpoint
pretrain Pre-training datasets Comprehensive set of 20+ rules including RuleAlphaWords, RuleCapitalWords, etc.

To use a specific rule group:

input_data = {
    "eval_group": "sft",  # Use "default", "sft", or "pretrain"
    # other parameters...
}

Feature Highlights

Multi-source & Multi-modal Support

  • Data Sources: Local files, Hugging Face datasets, S3 storage
  • Data Types: Pre-training, fine-tuning, and evaluation datasets
  • Data Modalities: Text and image

Rule-based & Model-based Evaluation

  • Built-in Rules: 20+ general heuristic evaluation rules
  • LLM Integration: OpenAI, Kimi, and local models (e.g., Llama3)
  • Custom Rules: Easily extend with your own rules and models
  • Security Evaluation: Perspective API integration

Flexible Usage

  • Interfaces: CLI and SDK options
  • Integration: Easy integration with other platforms
  • Execution Engines: Local and Spark

Comprehensive Reporting

  • Quality Metrics: 7-dimensional quality assessment
  • Traceability: Detailed reports for anomaly tracking

User Guide

Custom Rules, Prompts, and Models

If the built-in rules don't meet your requirements, you can create custom ones:

Custom Rule Example

from dingo.model import Model
from dingo.model.rule.base import BaseRule
from dingo.config.config import DynamicRuleConfig
from dingo.io import MetaData
from dingo.model.modelres import ModelRes

@Model.rule_register('QUALITY_BAD_RELEVANCE', ['default'])
class MyCustomRule(BaseRule):
    """Check for custom pattern in text"""

    dynamic_config = DynamicRuleConfig(pattern=r'your_pattern_here')

    @classmethod
    def eval(cls, input_data: MetaData) -> ModelRes:
        res = ModelRes()
        # Your rule implementation here
        return res

Custom LLM Integration

from dingo.model import Model
from dingo.model.llm.base_openai import BaseOpenAI

@Model.llm_register('my_custom_model')
class MyCustomModel(BaseOpenAI):
    # Custom implementation here
    pass

See more examples in:

Execution Engines

Local Execution

from dingo.io import InputArgs
from dingo.exec import Executor

input_args = InputArgs(**input_data)
executor = Executor.exec_map["local"](input_args)
result = executor.execute()

# Get results
summary = executor.get_summary()        # Overall evaluation summary
bad_data = executor.get_bad_info_list() # List of problematic data
good_data = executor.get_good_info_list() # List of high-quality data

Spark Execution

from dingo.io import InputArgs
from dingo.exec import Executor
from pyspark.sql import SparkSession

# Initialize Spark
spark = SparkSession.builder.appName("Dingo").getOrCreate()
spark_rdd = spark.sparkContext.parallelize([...])  # Your data as MetaData objects

input_args = InputArgs(eval_group="default", save_data=True)
executor = Executor.exec_map["spark"](input_args, spark_session=spark, spark_rdd=spark_rdd)
result = executor.execute()

Evaluation Reports

After evaluation, Dingo generates:

  1. Summary Report (summary.json): Overall metrics and scores
  2. Detailed Reports: Specific issues for each rule violation

Example summary:

{
    "task_id": "d6c922ec-981c-11ef-b723-7c10c9512fac",
    "task_name": "dingo",
    "eval_group": "default",
    "input_path": "test/data/test_local_jsonl.jsonl",
    "output_path": "outputs/d6c921ac-981c-11ef-b723-7c10c9512fac",
    "create_time": "20241101_144510",
    "score": 50.0,
    "num_good": 1,
    "num_bad": 1,
    "total": 2,
    "type_ratio": {
        "QUALITY_BAD_COMPLETENESS": 0.5,
        "QUALITY_BAD_RELEVANCE": 0.5
    },
    "name_ratio": {
        "QUALITY_BAD_COMPLETENESS-RuleColonEnd": 0.5,
        "QUALITY_BAD_RELEVANCE-RuleSpecialCharacter": 0.5
    }
}

Future Plans

  • [ ] Richer graphic and text evaluation indicators
  • [ ] Audio and video data modality evaluation
  • [ ] Small model evaluation (fasttext, Qurating)
  • [ ] Data diversity evaluation

Limitations

The current built-in detection rules and model methods focus on common data quality problems. For specialized evaluation needs, we recommend customizing detection rules.

Acknowledgments

Contribution

We appreciate all the contributors for their efforts to improve and enhance Dingo. Please refer to the Contribution Guide for guidance on contributing to the project.

License

This project uses the Apache 2.0 Open Source License.

Citation

If you find this project useful, please consider citing our tool:

@misc{dingo,
  title={Dingo: A Comprehensive Data Quality Evaluation Tool for Large Models},
  author={Dingo Contributors},
  howpublished={\url{https://github.com/DataEval/dingo}},
  year={2024}
}

For Tasks:

Click tags to check more tools for each tasks

For Jobs:

Alternative AI tools for dingo

Similar Open Source Tools

For similar tasks

No tools available

For similar jobs

No tools available