chat-your-doc

chat-your-doc

Awesome LLM application repo

Stars: 51

Visit
 screenshot

Chat Your Doc is an experimental project exploring various applications based on LLM technology. It goes beyond being just a chatbot project, focusing on researching LLM applications using tools like LangChain and LlamaIndex. The project delves into UX, computer vision, and offers a range of examples in the 'Lab Apps' section. It includes links to different apps, descriptions, launch commands, and demos, aiming to showcase the versatility and potential of LLM applications.

README:

Awesome LLMs applications and experiments

Chat Your Doc is an experimental project aimed at exploring various applications based on LLM. Although it is nominally a chatbot project, its purpose is broader. The project explores various applications using tools such as LangChain, LlamaIndex. In the "Lab Apps" section, you can find many examples, including simple and complex ones. The project focuses on researching and exploring various LLM applications, while also incorporating other fields such as UX and computer vision. The "Lab App" section includes a table with links to various apps, descriptions, launch commands, and demos.


RAG



Knowledge Center

Also, take a look at a use-case known as Knowledge Center that leverages different RAG or Chunking techniques in this repository.

Typical multimodal Chatbot sample


Setup

Some keys

For OpenAI, set API-KEY to your environment variables.

Get OpenAI API-KEY

export OPENAI_API_KEY="sk-$TJHGFHJDSFDGAFDFRTHT§$%$%&§%&"

Conda

conda env create -n chat-ur-doc -f environment.yml
conda activate chat-ur-doc

Pip

pip install -r requirements.txt

Storage

ref: https://python.langchain.com/docs/modules/data_connection/vectorstores/

Chroma, FAISS

pip install chromadb

pip install faiss-cpu

Popular solutions

Boilerplate codes of tokenization in LLM project, take away codes.

LLM fine-tuning step: Tokenizing

How to chat with a document via vector database?

Chat with your PDF (Streamlit Demo)

How do auto-annotation (object detection) on images?

LLM, LangChain Agent, Computer Vision

OpenAI Assistants, awesome, it manages a lot of things for you.

How to Use OpenAI Assistants (API)

Advanced RAG approaches, learn details how RAG works.

Advanced RAG

LangChain App Template Example

Experience with the LangChain App Template

wine price app, prompt and query wine price. The application has been created, just need to create data, install Poetry and run it.

Full instructions for creating a LangChain App Template can be found here: LangChain App Template

RAG, Vector and Summary pattern implementation

Llama-Index: RAG with Vector and Summary

Multi-Retrievers with Vector and Summary pattern implementation.

Llama-Index: RAG with Vector and Summary by using Agent

Agent for Vector and Summary pattern implementation.

Create Agent from Scratch

Intuitively create an agent from scratch with LangChain.

Create Agent from Scratch

Intuitively create an agent from scratch with LlamaIndex.

Multi-Query Retrieval with RAG

Enhance query context with intermediate queries during RAG to improve information retrieval for the original query.

Prio-reasoning

Explain how prio-reasoning works in LangChain(qa-chain with refine) and LlamaIndex (MultiStepQueryEngine).

RAG with Multi-Query pattern

Introduce the Multi-Query pattern in bundle and step-down solutions.

LangGraph: hello,world!

Introduce the hello,world version use-case with LangGraph, just simple example to kick off the topic.

Quick Tour: Ollama+Gemma+LangChain

Use ollama to deploy and use Gemma with langchain on local machine.

RAG with Hypothetical Document Embeddings(HyDE)

Hypothetical Document Embeddings, two-steps process of RAG. Implementation of HyDE retrieval by LlamaIndex, hybrid, local or remote LLMs.

LangChain: Use LLM Agent for World GPU Demand Prediction Report

Reflecting the analytical methods of the AI era, based on the Agent mechanism and generative AI, intelligently generates necessary information and code.

LangChain: Multi-User Conversation Support

By using some methods, make the conversation able to happen among multiple users, achieving the basic of a simple “group conversation”.

LangChain: History-Driven RAG Enhanced By LLM-Chain Routing LangChain

Using LLM to predict the routing of the chain and achieve Retrieval Augmented Generation with help of conversation history applying HyDE or refined standalone query.

LangChain: Multi-User Conversation Support(Follow-up)

A follow-up read: Use Cohere’s documents and a special field in additional_kwargsfeature to enhance the organization of information in multi-user conversation.

(Llama-Index Workflow)Translation Agent via Reflection Workflow

Implemention of Translation Agent: Agentic translation using reflection workflow with Llama-Index workflow framework.

Simple

App Description Launch Demo
i-ask.sh Simply ask & answer via OpenAI API i-ask.sh "Who is Joe Biden?"
chat_openai.py Just one chat session streamlit run simple/chat_openai.py --server.port 8000 --server.enableCORS false
open_api_llm_app.py Use OpenAI LLM to answer simple question streamlit run simple/open_api_llm_app.py --server.port 8001 --server.enableCORS false
read_html_app.py Get html content and chunk streamlit run simple/read_html_app.py --server.port 8002 --server.enableCORS false
chatbot.py Basic chatbot streamlit run simple/chatbot.py --server.port 8003 --server.enableCORS false
retriever.py Use concept of retriever and LangChain Expression Language (LCEL) streamlit run simple/retriever.py --server.port 8004 --server.enableCORS false
hello_llamaindex.py A very simple LlamaIndex to break ice of the story. streamlit run simple/hello_llamaindex.py --server.port 8005 --server.enableCORS false
llamaindex_context.py A simple app of LlamaIndex, introduce of context for configuration, StorageContext, ServiceContext. streamlit run simple/llamaindex_context.py --server.port 8006 --server.enableCORS false
llamaindex_hub_simple.py A simple app of LlamaIndex, introduce of load stuff from https://llamahub.ai/. streamlit run simple/llamaindex_hub_simple.py --server.port 8007 --server.enableCORS false
prio_reasoning_context.py A simple app that based on RAG with Prio-Reasoning pattern in LlamaIndex or LangChain. streamlit run simple/prio_reasoning_context.py --server.port 8008 --server.enableCORS false read
ollama_gemma.py A Ollama for Gemma integration with the langchain. read
nvidia_vs_groq.py Compare Nvidia API and Groq, by using llama2 and mixtral_8x7b streamlit run simple/nvidia_vs_groq.py --server.port 8009 --server.enableCORS false read
llamaindex_workflow_reflection_flow.py Implemention of Translation Agent: Agentic translation using reflection workflow with Llama-Index workflow framework streamlit run simple/llamaindex_workflow_reflection_flow.py --server.port 8009 --server.enableCORS false read
langchain_citation_chain.py (LangChain) Retrieval Augmented Generation with Citations, inspired by Llama-index version Llama-index version

Intermediate

App Description Launch Demo
sim_app.py Use the vector database to save file in chunks and retrieve similar content from the database streamlit run intermediate/sim_app.py --server.port 8002 --server.enableCORS false
llm_chain_translator_app.py Use LLMChain to do language translation streamlit run intermediate/llm_chain_translator_app.py --server.port 8003 --server.enableCORS false
html_summary_chat_app.py Summary html content streamlit run intermediate/html_summary_chat_app.py --server.port 8004 --server.enableCORS false
html_2_json_app.py Summary html keypoints into keypoint json streamlit run intermediate/html_2_json_app.py --server.port 8005 --server.enableCORS false
assistants.py Use OpenAI Assistants API in different ways streamlit run intermediate/assistants.py --server.port 8006 --server.enableCORS false read
hyde_retrieval.py Implementation of HyDE retrieval by LlamaIndex, hybrid, local or remote LLMs. streamlit run intermediate/hyde_retrieval.py --server.port 8007 --server.enableCORS false read

💥 Advanced

App Description Launch Demo
qa_chain_pdf_app.py Ask info from PDF file, chat with it streamlit run advanced/qa_chain_pdf_app.py --server.port 8004 --server.enableCORS false
faiss_app.py Ask info from a internet file, find similar docs and answer with VectorDBQAWithSourcesChain streamlit run advanced/faiss_app.py --server.port 8005 --server.enableCORS false
html_2_json_output_app.py Load html content and summary into json objects streamlit run advanced/html_2_json_output_app.py --server.port 8006 --server.enableCORS false
joke_bot.py Prompt engineering to get one random joke or rate one joke python advanced/joke_bot.py --rate "Why couldn't the bicycle stand up by itself? It was two tired." or python advanced/joke_bot.py --tell --num 4
chat_ur_docs.py Chat with documents freely streamlit run advanced/chat_ur_docs.py --server.port 8004 --server.enableCORS false read
image_auto_annotation.py Use LLM, LangChain Agent and GroundingDINO to detect objects on images freely (auto-annotation) streamlit run advanced/image_auto_annotation.py --server.port 8006 --server.enableCORS false read
langgraph_auto_annotation.py LangGraph, YOLOv8 World, Gemma, BlipProcessor or OpenAI-Vision to detect on image freely (auto-annotation) streamlit run advanced/langgraph_auto_annotation.py --server.port 8006 --server.enableCORS false
adv_rag.py Advanced RAG approaches, use partition_pdf to extract texts and tables and analyze them streamlit run advanced/adv_rag.py --server.port 8007 --server.enableCORS false read
llamaindex_vector_summary_retriever.py Use LlamaIndex to apply vectory/summary pattern by using multi retrievers streamlit run advanced/llamaindex_multi_vector_summary.py --server.port 8008 --server.enableCORS false read
llamaindex_vector_summary_agent.py Use LlamaIndex to apply vectory/summary pattern by using agent streamlit run advanced/llamaindex_multi_vector_summary_agent.py --server.port 8009 --server.enableCORS false read
multi_queries.py Use LlamaIndex and LangChain to apply the multi-queries pattern, including build method of the LangChain, and custom retriever based solution in Llama-Index, also the other sub-query based solutions streamlit run advanced/multi_queries.py --server.port 8010 --server.enableCORS false read
langgraph_agent_mailtool.py Use LangGraph (Groq is used for agent) to driven a Email deliever of the custom receipts. streamlit run advanced/langgraph_agent_mailtool.py --server.port 8011 --server.enableCORS false
llamaindex_adaptive_rag.py App that implements the adaptive RAG pattern streamlit run advanced/llamaindex_adaptive_rag.py --server.port 8012 --server.enableCORS false

Notebooks

Notebook Description Demo
audio2text2LLM.ipynb Basic audio to text and summary
audio2text2music.ipynb audiocraft, Whisper, automatic-speech-recognition, speech to text, generate music by the text, synthesis speech+BGM
image_description.ipynb Use OpenAI Vision or blip-image-captioning-base, blip-image-captioning-large, a use-case to get the image description.
image_desc2music.ipynb audiocraft blip-image-captioning-base, blip-image-captioning-large, a use-case to get the image description and generate music based on the image
langchain_agent_scratch.ipynb Create the agent from scratch in langchain read
llamaindex_agent_from_scratch.ipynb Create the agent from scratch with LlamaIndex read
llamaindex_vector_summary_retriever.ipynb Use LlamaIndex to apply vectory/summary pattern by using multi retrievers read
llamaindex_vector_summary_agent.ipynb Use LlamaIndex to apply vectory/summary pattern by using agent read
multi_queries_retrieval.ipynb Use LlamaIndex and LangChain to apply mutli-query pattern for RAG read
yolo8_world_and_openai_vision.py Use YoLoV8 World and OpenAI Vision together to enchance image auto-annotation
yolo8_world_and_gemma.py Use YoLoV8 World, OpenAI Vision, Ollama Gemma integration to enchance image auto-annotation
langgraph_helloworld.ipynb hello,world version of langgraph read
langchain_agent_gmail.ipynb Use LangGraph to driven a Email deliever of the custom receipts.
hyde_retrieval.ipynb Implementation of HyDE retrieval by LlamaIndex, hybrid, local or remote LLMs. read
agent_gpu_demand_prediction.ipynb Use pure Agent (LangChain) to generate a report paper of global GPU demand prediction. read,,
multi_user_conversation.ipynb Try to do multi-user chat with LangChain, ConversationBufferMemory, ConversationChain, RunnableWithMessageHistory, ChatMessageHistory, convert_openai_messages and LCEL read read (Follow-up)
DenseXRetrieval.ipynb Dense X Retrieval: What Retrieval Granularity Should We Use? by using Llama Packs
llamaindex_query_router.ipynb LLM application through query routing and long-context, a type of reflection flow based on the user query. Inspired by Retrieval Augmented Generation or Long-Context LLMs? A Comprehensive Study and Hybrid Approach

Star History



For Tasks:

Click tags to check more tools for each tasks

For Jobs:

Alternative AI tools for chat-your-doc

Similar Open Source Tools

For similar tasks

For similar jobs