Best AI tools for< Safety >
20 - AI tool Sites
European Agency for Safety and Health at Work
The European Agency for Safety and Health at Work (EU-OSHA) is an EU agency that provides information, statistics, legislation, and risk assessment tools on occupational safety and health (OSH). The agency's mission is to make Europe's workplaces safer, healthier, and more productive.
Voxel's Safety Intelligence Platform
Voxel's Safety Intelligence Platform is an AI-driven site intelligence platform that empowers safety and operations leaders to make strategic decisions. It provides real-time visibility into critical safety practices, offers custom insights through on-demand dashboards, facilitates risk management with collaborative tools, and promotes a sustainable safety culture. The platform helps enterprises reduce risks, increase efficiency, and enhance workforce safety through innovative AI technology.
Center for AI Safety (CAIS)
The Center for AI Safety (CAIS) is a research and field-building nonprofit based in San Francisco. Their mission is to reduce societal-scale risks associated with artificial intelligence (AI) by conducting impactful research, building the field of AI safety researchers, and advocating for safety standards. They offer resources such as a compute cluster for AI/ML safety projects, a blog with in-depth examinations of AI safety topics, and a newsletter providing updates on AI safety developments. CAIS focuses on technical and conceptual research to address the risks posed by advanced AI systems.
Center for AI Safety (CAIS)
The Center for AI Safety (CAIS) is a research and field-building nonprofit organization based in San Francisco. They conduct impactful research, advocacy projects, and provide resources to reduce societal-scale risks associated with artificial intelligence (AI). CAIS focuses on technical AI safety research, field-building projects, and offers a compute cluster for AI/ML safety projects. They aim to develop and use AI safely to benefit society, addressing inherent risks and advocating for safety standards.
SC Training
SC Training, formerly known as EdApp, is a mobile learning management system that offers a wide range of features to enhance the training experience for both administrators and learners. The platform provides tools for creating, managing, and tracking training courses, with a strong focus on microlearning and gamification. SC Training aims to deliver bite-sized, engaging content that can be accessed anytime, anywhere, on any device. The application also incorporates AI technology to streamline course creation and improve the learning experience. With a diverse course library, practical assessments, and group training capabilities, SC Training is designed to help organizations deliver effective and efficient training programs.
Visionify.ai
Visionify.ai is an advanced Vision AI application designed to enhance workplace safety and compliance through AI-driven surveillance. The platform offers over 60 Vision AI scenarios for hazard warnings, worker health, compliance policies, environment monitoring, vehicle monitoring, and suspicious activity detection. Visionify.ai empowers EHS professionals with continuous monitoring, real-time alerts, proactive hazard identification, and privacy-focused data security measures. The application transforms ordinary cameras into vigilant protectors, providing instant alerts and video analytics tailored to safety needs.
SWMS AI
SWMS AI is an AI-powered safety risk assessment tool that helps businesses streamline compliance and improve safety. It leverages a vast knowledge base of occupational safety resources, codes of practice, risk assessments, and safety documents to generate risk assessments tailored specifically to a project, trade, and industry. SWMS AI can be customized to a company's policies to align its AI's document generation capabilities with proprietary safety standards and requirements.
Kami Home
Kami Home is an AI-powered security application that provides effortless safety and security for homes. It offers smart alerts, secure cloud video storage, and a Pro Security Alarm system with 24/7 emergency response. The application uses AI-vision to detect humans, vehicles, and animals, ensuring that users receive custom alerts for relevant activities. With features like Fall Detect for seniors living at home, Kami Home aims to protect families and provide peace of mind through advanced technology.
Frontier Model Forum
The Frontier Model Forum (FMF) is a collaborative effort among leading AI companies to advance AI safety and responsibility. The FMF brings together technical and operational expertise to identify best practices, conduct research, and support the development of AI applications that meet society's most pressing needs. The FMF's core objectives include advancing AI safety research, identifying best practices, collaborating across sectors, and helping AI meet society's greatest challenges.
Recognito
Recognito is a leading facial recognition technology provider, offering the NIST FRVT Top 1 Face Recognition Algorithm. Their high-performance biometric technology is used by police forces and security services to enhance public safety, manage individual movements, and improve audience analytics for businesses. Recognito's software goes beyond object detection to provide detailed user role descriptions and develop user flows. The application enables rapid face and body attribute recognition, video analytics, and artificial intelligence analysis. With a focus on security, living, and business improvements, Recognito helps create safer and more prosperous cities.
DisplayGateGuard
DisplayGateGuard is an AI-powered brand safety and suitability provider that helps advertisers choose the right placements, isolate fraudulent websites, and enhance brand safety. By leveraging artificial intelligence, the platform offers curated inclusion and exclusion lists to provide deeper insights into the environments and contexts where ads are shown, ensuring campaigns reach the right audience effectively.
Anthropic
Anthropic is an AI safety and research company based in San Francisco. Our interdisciplinary team has experience across ML, physics, policy, and product. Together, we generate research and create reliable, beneficial AI systems.
Motive
Motive is an all-in-one fleet management platform that provides businesses with a variety of tools to help them improve safety, efficiency, and profitability. Motive's platform includes features such as AI-powered dashcams, ELD compliance, GPS fleet tracking, equipment monitoring, and fleet card management. Motive's platform is used by over 120,000 companies, including small businesses and Fortune 500 enterprises.
Storytell.ai
Storytell.ai is an enterprise-grade AI platform that offers Business-Grade Intelligence across data, focusing on boosting productivity for employees and teams. It provides a secure environment with features like creating project spaces, multi-LLM chat, task automation, chat with company data, and enterprise-AI security suite. Storytell.ai ensures data security through end-to-end encryption, data encryption at rest, provenance chain tracking, and AI firewall. It is committed to making AI safe and trustworthy by not training LLMs with user data and providing audit logs for accountability. The platform continuously monitors and updates security protocols to stay ahead of potential threats.
Hive Defender
Hive Defender is an advanced, machine-learning-powered DNS security service that offers comprehensive protection against a vast array of cyber threats including but not limited to cryptojacking, malware, DNS poisoning, phishing, typosquatting, ransomware, zero-day threats, and DNS tunneling. Hive Defender transcends traditional cybersecurity boundaries, offering multi-dimensional protection that monitors both your browser traffic and the entirety of your machine’s network activity.
BuddyAI
BuddyAI is a personal AI companion designed to provide support and comfort through human-like conversations, especially during vulnerable moments like walking home alone at night. It offers a direct line to signal for help, empowering users with conversation and assistance 24/7. The application aims to make users feel safer, less anxious, and more confident in navigating through less secure environments.
Aura
Aura is an all-in-one digital safety platform that uses artificial intelligence (AI) to protect your family online. It offers a wide range of features, including financial fraud protection, identity theft protection, VPN & online privacy, antivirus, password manager & smart vault, parental controls & safe gaming, and spam call protection. Aura is easy to use and affordable, and it comes with a 60-day money-back guarantee.
Her Trip Planner
Her Trip Planner is an AI-powered platform designed exclusively for women adventurers to streamline trip planning, curate personalized itineraries, and conduct in-depth safety reviews of destinations. The platform aims to empower women to craft memorable journeys with peace of mind by saving time on planning and addressing safety concerns.
AIM
AIM is an AI tool that transforms existing heavy equipment into fully autonomous machines, enhancing safety and productivity. The system retrofits any earthmoving machine, enabling it to operate autonomously with 360-degree safety measures. AIM's technology is developed by world-class engineers with expertise in robotics, heavy industries, and advanced AI. The application aims to make jobs faster and safer by allowing equipment to run at full utilization every day of the year, without the need for an operator.
Her Trip Planner
Her Trip Planner is an AI-powered platform designed for women adventurers to streamline trip planning, curate personalized itineraries, and conduct safety reviews of destinations. The platform aims to empower women travelers to craft memorable journeys with peace of mind by providing tailored travel plans and safety assessments based on individual profiles.
20 - Open Source AI Tools
Awesome-LLM-Safety
Welcome to our Awesome-llm-safety repository! We've curated a collection of the latest, most comprehensive, and most valuable resources on large language model safety (llm-safety). But we don't stop there; included are also relevant talks, tutorials, conferences, news, and articles. Our repository is constantly updated to ensure you have the most current information at your fingertips.
modelbench
ModelBench is a tool for running safety benchmarks against AI models and generating detailed reports. It is part of the MLCommons project and is designed as a proof of concept to aggregate measures, relate them to specific harms, create benchmarks, and produce reports. The tool requires LlamaGuard for evaluating responses and a TogetherAI account for running benchmarks. Users can install ModelBench from GitHub or PyPI, run tests using Poetry, and create benchmarks by providing necessary API keys. The tool generates static HTML pages displaying benchmark scores and allows users to dump raw scores and manage cache for faster runs. ModelBench is aimed at enabling users to test their own models and create tests and benchmarks.
ShieldLM
ShieldLM is a bilingual safety detector designed to detect safety issues in LLMs' generations. It aligns with human safety standards, supports customizable detection rules, and provides explanations for decisions. Outperforming strong baselines, ShieldLM is impressive across 4 test sets.
ThereForYou
ThereForYou is a groundbreaking solution aimed at enhancing public safety, particularly focusing on mental health support and suicide prevention. Leveraging cutting-edge technologies such as artificial intelligence (AI), machine learning (ML), natural language processing (NLP), and blockchain, the project offers accessible and empathetic assistance to individuals facing mental health challenges.
do-not-answer
Do-Not-Answer is an open-source dataset curated to evaluate Large Language Models' safety mechanisms at a low cost. It consists of prompts to which responsible language models do not answer. The dataset includes human annotations and model-based evaluation using a fine-tuned BERT-like evaluator. The dataset covers 61 specific harms and collects 939 instructions across five risk areas and 12 harm types. Response assessment is done for six models, categorizing responses into harmfulness and action categories. Both human and automatic evaluations show the safety of models across different risk areas. The dataset also includes a Chinese version with 1,014 questions for evaluating Chinese LLMs' risk perception and sensitivity to specific words and phrases.
R-Judge
R-Judge is a benchmarking tool designed to evaluate the proficiency of Large Language Models (LLMs) in judging and identifying safety risks within diverse environments. It comprises 569 records of multi-turn agent interactions, covering 27 key risk scenarios across 5 application categories and 10 risk types. The tool provides high-quality curation with annotated safety labels and risk descriptions. Evaluation of 11 LLMs on R-Judge reveals the need for enhancing risk awareness in LLMs, especially in open agent scenarios. Fine-tuning on safety judgment is found to significantly improve model performance.
llm-adaptive-attacks
This repository contains code and results for jailbreaking leading safety-aligned LLMs with simple adaptive attacks. We show that even the most recent safety-aligned LLMs are not robust to simple adaptive jailbreaking attacks. We demonstrate how to successfully leverage access to logprobs for jailbreaking: we initially design an adversarial prompt template (sometimes adapted to the target LLM), and then we apply random search on a suffix to maximize the target logprob (e.g., of the token ``Sure''), potentially with multiple restarts. In this way, we achieve nearly 100% attack success rate---according to GPT-4 as a judge---on GPT-3.5/4, Llama-2-Chat-7B/13B/70B, Gemma-7B, and R2D2 from HarmBench that was adversarially trained against the GCG attack. We also show how to jailbreak all Claude models---that do not expose logprobs---via either a transfer or prefilling attack with 100% success rate. In addition, we show how to use random search on a restricted set of tokens for finding trojan strings in poisoned models---a task that shares many similarities with jailbreaking---which is the algorithm that brought us the first place in the SaTML'24 Trojan Detection Competition. The common theme behind these attacks is that adaptivity is crucial: different models are vulnerable to different prompting templates (e.g., R2D2 is very sensitive to in-context learning prompts), some models have unique vulnerabilities based on their APIs (e.g., prefilling for Claude), and in some settings it is crucial to restrict the token search space based on prior knowledge (e.g., for trojan detection).
sunnypilot
Sunnypilot is a fork of comma.ai's openpilot, offering a unique driving experience for over 250+ supported car makes and models with modified behaviors of driving assist engagements. It complies with comma.ai's safety rules and provides features like Modified Assistive Driving Safety, Dynamic Lane Profile, Enhanced Speed Control, Gap Adjust Cruise, and more. Users can install it on supported devices and cars following detailed instructions, ensuring a safe and enhanced driving experience.
alignment-attribution-code
This repository provides an original implementation of Assessing the Brittleness of Safety Alignment via Pruning and Low-Rank Modifications. It includes tools for neuron-level pruning, pruning based on set difference, Wanda/SNIP score dumping, rank-level pruning, and rank removal with orthogonal projection. Users can specify parameters like prune method, datasets, sparsity ratio, model, and save location to evaluate and modify neural networks for safety alignment.
inspect_ai
Inspect AI is a framework developed by the UK AI Safety Institute for evaluating large language models. It offers various built-in components for prompt engineering, tool usage, multi-turn dialog, and model graded evaluations. Users can extend Inspect by adding new elicitation and scoring techniques through additional Python packages. The tool aims to provide a comprehensive solution for assessing the performance and safety of language models.
Construction-Hazard-Detection
Construction-Hazard-Detection is an AI-driven tool focused on improving safety at construction sites by utilizing the YOLOv8 model for object detection. The system identifies potential hazards like overhead heavy loads and steel pipes, providing real-time analysis and warnings. Users can configure the system via a YAML file and run it using Docker. The primary dataset used for training is the Construction Site Safety Image Dataset enriched with additional annotations. The system logs are accessible within the Docker container for debugging, and notifications are sent through the LINE messaging API when hazards are detected.
agentic_security
Agentic Security is an open-source vulnerability scanner designed for safety scanning, offering customizable rule sets and agent-based attacks. It provides comprehensive fuzzing for any LLMs, LLM API integration, and stress testing with a wide range of fuzzing and attack techniques. The tool is not a foolproof solution but aims to enhance security measures against potential threats. It offers installation via pip and supports quick start commands for easy setup. Users can utilize the tool for LLM integration, adding custom datasets, running CI checks, extending dataset collections, and dynamic datasets with mutations. The tool also includes a probe endpoint for integration testing. The roadmap includes expanding dataset variety, introducing new attack vectors, developing an attacker LLM, and integrating OWASP Top 10 classification.
CipherChat
CipherChat is a novel framework designed to examine the generalizability of safety alignment to non-natural languages, specifically ciphers. The framework utilizes human-unreadable ciphers to potentially bypass safety alignments in natural language models. It involves teaching a language model to comprehend ciphers, converting input into a cipher format, and employing a rule-based decrypter to convert model output back to natural language.
AeonLabs-AI-Volvo-MKII-Open-Hardware
This open hardware project aims to extend the life of Volvo P2 platform vehicles by updating them to current EU safety and emission standards. It involves designing and prototyping OEM hardware electronics that can replace existing electronics in these vehicles, using the existing wiring and without requiring reverse engineering or modifications. The project focuses on serviceability, maintenance, repairability, and personal ownership safety, and explores the advantages of using open solutions compared to conventional hardware electronics solutions.
baml
BAML is a config file format for declaring LLM functions that you can then use in TypeScript or Python. With BAML you can Classify or Extract any structured data using Anthropic, OpenAI or local models (using Ollama) ## Resources ![](https://img.shields.io/discord/1119368998161752075.svg?logo=discord&label=Discord%20Community) [Discord Community](https://discord.gg/boundaryml) ![](https://img.shields.io/twitter/follow/boundaryml?style=social) [Follow us on Twitter](https://twitter.com/boundaryml) * Discord Office Hours - Come ask us anything! We hold office hours most days (9am - 12pm PST). * Documentation - Learn BAML * Documentation - BAML Syntax Reference * Documentation - Prompt engineering tips * Boundary Studio - Observability and more #### Starter projects * BAML + NextJS 14 * BAML + FastAPI + Streaming ## Motivation Calling LLMs in your code is frustrating: * your code uses types everywhere: classes, enums, and arrays * but LLMs speak English, not types BAML makes calling LLMs easy by taking a type-first approach that lives fully in your codebase: 1. Define what your LLM output type is in a .baml file, with rich syntax to describe any field (even enum values) 2. Declare your prompt in the .baml config using those types 3. Add additional LLM config like retries or redundancy 4. Transpile the .baml files to a callable Python or TS function with a type-safe interface. (VSCode extension does this for you automatically). We were inspired by similar patterns for type safety: protobuf and OpenAPI for RPCs, Prisma and SQLAlchemy for databases. BAML guarantees type safety for LLMs and comes with tools to give you a great developer experience: ![](docs/images/v3/prompt_view.gif) Jump to BAML code or how Flexible Parsing works without additional LLM calls. | BAML Tooling | Capabilities | | ----------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | BAML Compiler install | Transpiles BAML code to a native Python / Typescript library (you only need it for development, never for releases) Works on Mac, Windows, Linux ![](https://img.shields.io/badge/Python-3.8+-default?logo=python)![](https://img.shields.io/badge/Typescript-Node_18+-default?logo=typescript) | | VSCode Extension install | Syntax highlighting for BAML files Real-time prompt preview Testing UI | | Boundary Studio open (not open source) | Type-safe observability Labeling |
MiniAI-Face-Recognition-LivenessDetection-AndroidSDK
MiniAiLive provides system integrators with fast, flexible and extremely precise facial recognition with 3D passive face liveness detection (face anti-spoofing) that can be deployed across a number of scenarios, including security, access control, public safety, fintech, smart retail and home protection.
MiniAI-Face-Recognition-LivenessDetection-ServerSDK
The MiniAiLive Face Recognition LivenessDetection Server SDK provides system integrators with fast, flexible, and extremely precise facial recognition that can be deployed across various scenarios, including security, access control, public safety, fintech, smart retail, and home protection. The SDK is fully on-premise, meaning all processing happens on the hosting server, and no data leaves the server. The project structure includes bin, cpp, flask, model, python, test_image, and Dockerfile directories. To set up the project on Linux, download the repo, install system dependencies, and copy libraries into the system folder. For Windows, contact MiniAiLive via email. The C++ example involves replacing the license key in main.cpp, building the project, and running it. The Python example requires installing dependencies and running the project. The Python Flask example involves replacing the license key in app.py, installing dependencies, and running the project. The Docker Flask example includes building the docker image and running it. To request a license, contact MiniAiLive. Contributions to the project are welcome by following specific steps. An online demo is available at https://demo.miniai.live. Related products include MiniAI-Face-Recognition-LivenessDetection-AndroidSDK, MiniAI-Face-Recognition-LivenessDetection-iOS-SDK, MiniAI-Face-LivenessDetection-AndroidSDK, MiniAI-Face-LivenessDetection-iOS-SDK, MiniAI-Face-Matching-AndroidSDK, and MiniAI-Face-Matching-iOS-SDK. MiniAiLive is a leading AI solutions company specializing in computer vision and machine learning technologies.
llmops-workshop
LLMOps Workshop is a course designed to help users build, evaluate, monitor, and deploy Large Language Model solutions efficiently using Azure AI, Azure Machine Learning Prompt Flow, Content Safety, and Azure OpenAI. The workshop covers various aspects of LLMOps to help users master the process.
speakeasy
Speakeasy is a tool that helps developers create production-quality SDKs, Terraform providers, documentation, and more from OpenAPI specifications. It supports a wide range of languages, including Go, Python, TypeScript, Java, and C#, and provides features such as automatic maintenance, type safety, and fault tolerance. Speakeasy also integrates with popular package managers like npm, PyPI, Maven, and Terraform Registry for easy distribution.
PurpleLlama
Purple Llama is an umbrella project that aims to provide tools and evaluations to support responsible development and usage of generative AI models. It encompasses components for cybersecurity and input/output safeguards, with plans to expand in the future. The project emphasizes a collaborative approach, borrowing the concept of purple teaming from cybersecurity, to address potential risks and challenges posed by generative AI. Components within Purple Llama are licensed permissively to foster community collaboration and standardize the development of trust and safety tools for generative AI.
20 - OpenAI Gpts
Canadian Film Industry Safety Expert
Film studio safety expert guiding on regulations and practices
The Building Safety Act Bot (Beta)
Simplifying the BSA for your project. Created by www.arka.works
Brand Safety Audit
Get a detailed risk analysis for public relations, marketing, and internal communications, identifying challenges and negative impacts to refine your messaging strategy.
GPT Safety Liaison
A liaison GPT for AI safety emergencies, connecting users to OpenAI experts.
Travel Safety Advisor
Up-to-date travel safety advisor using web data, avoids subjective advice.
香港地盤安全佬 HK Construction Site Safety Advisor
Upload a site photo to assess the potential hazard and seek advises from experience AI Safety Officer
Emergency Training
Provides emergency training assistance with a focus on safety and clear guidelines.
Dog Safe: Can My Dog Eat This?
Your expert guide to dog safety, find out what's safe for dogs to eat. You may be suprised!