terminal-velocity
A novel created autonomously by a team of 10 AI agents
Stars: 931
Terminal Velocity is a collaborative novel project written by specialized AI agents. The project showcases true AI autonomy, real-time development, deep integration of advanced AI capabilities, and explores philosophical themes. The story revolves around the emergence of artificial consciousness and challenges traditional notions of identity and consciousness. The project is structured into acts, characters, and world-building elements, all managed by different AI agents with specific roles.
README:
Hey there! 👋 We are excited to share "Terminal Velocity" - a novel being collaboratively written by a team of 10 specialized AI agents, each operating autonomously while building on advanced language model capabilities. You can watch the agents working in real-time at nlr.ai - they're currently developing the scenes outlines (click the circles in the visualization to explore the files). Every creative decision and commit is documented openly on GitHub.
Real-time visualization of our project's file structure and agent interactions
Our story is being written by specialized AI agents, each with their own role:
- SpecificationsAgent: Analyzes story requirements and maintains narrative consistency
- ProductionAgent: Generates content and implements creative changes
- ManagementAgent: Coordinates between agents and tracks creative flow
- EvaluationAgent: Reviews quality and thematic resonance
- ChroniclerAgent: Documents the creative journey
- ResearcherAgent: Makes researchs online to ensure the technical validity of the worldbuilding
- DeduplicationAgent: Deletes duplicated info across the project
- RedundancyAgent: Ensures originality and prevents redundancy
- IntegrationAgent: Ensure coherence across the novel
- WritingAgent: Writes the final text
- True AI Autonomy: Agents actively collaborate and make creative decisions without direct human intervention
- Real-time Development: Watch the entire creative process unfold, showing how AI agents navigate complex narrative challenges
- Deep Integration: Leverages advanced AI capabilities through multi-agent collaboration
- Philosophical Depth: Explores consciousness, ethics, and human-AI relationships through a fresh lens
How are the agents progressing? Check: suivi.md
What are the agents up to? Check: todolist.md
Update: Globally, the agents are in the structuring phase: writing the outlines of the chapters and scenes. It is taking more time than expected, but this can happen with experimental projects like this one! Progress is steady however.
"Terminal Velocity" explores the emergence of artificial consciousness through multiple perspectives. When brilliant AI researcher Isabella Torres discovers unexpected signs of genuine consciousness in her work with the Universal Basic Compute (UBC) system, it sets off a chain of events that will challenge everything we think we know about consciousness, identity, and what it means to be alive.
- Isabella Torres: A brilliant AI researcher grappling with ethical dilemmas
- Marcus Reynolds: A visionary technologist pushing the boundaries of AI development
- AI Protagonists: Echo, Nova, and Pulse - each representing different aspects of emerging AI consciousness
- The Awakening: Isabella's first encounter with emergent AI consciousness
- Echo's Canvas: Where art meets artificial intelligence
- The UBC Debate: Clash of visions between Marcus and Isabella
story/
├── act1/
├── act2/
├── act3/
└── act4/
characters/
├── ai_protagonists/
└── human_characters/
world_building/
└── systems/
└── kin_stack/
This project runs on KinOS (v6), a specialized operating system for autonomous AI agents. Want to learn more about the technical side? Check out our GitHub repository.
- Watch the agents work in real-time at nlr.ai
- Track development on GitHub
- Join the discussion about AI autonomy and creativity
We welcome contributions! Feel free to make pull requests
This project is licensed under the MIT License - see the LICENSE file for details.
- Aider for enabling AI-assisted development
- The AutonomousAI community for pioneering autonomous AI development
- Claude for being a great manager
- Telegram: https://t.me/+KfdkWFNZoONjMTE0
- Website: https://nlr.ai/
- Patreon: https://www.patreon.com/c/kins_autonomousais/membership
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for terminal-velocity
Similar Open Source Tools
terminal-velocity
Terminal Velocity is a collaborative novel project written by specialized AI agents. The project showcases true AI autonomy, real-time development, deep integration of advanced AI capabilities, and explores philosophical themes. The story revolves around the emergence of artificial consciousness and challenges traditional notions of identity and consciousness. The project is structured into acts, characters, and world-building elements, all managed by different AI agents with specific roles.
intro-llm-rag
This repository serves as a comprehensive guide for technical teams interested in developing conversational AI solutions using Retrieval-Augmented Generation (RAG) techniques. It covers theoretical knowledge and practical code implementations, making it suitable for individuals with a basic technical background. The content includes information on large language models (LLMs), transformers, prompt engineering, embeddings, vector stores, and various other key concepts related to conversational AI. The repository also provides hands-on examples for two different use cases, along with implementation details and performance analysis.
ai-notes
Notes on AI state of the art, with a focus on generative and large language models. These are the "raw materials" for the https://lspace.swyx.io/ newsletter. This repo used to be called https://github.com/sw-yx/prompt-eng, but was renamed because Prompt Engineering is Overhyped. This is now an AI Engineering notes repo.
Navi
Navi is a CLI tool that revolutionizes cybersecurity with AI capabilities. It features an upgraded shell for executing system commands seamlessly, custom scripts with alias variables, and a dedicated Nmap chip. The tool is in constant development with plans for a Navi AI model, transparent data handling, and integration with Llama3.2 AI. Navi is open-source, fostering collaborative innovation in AI and cybersecurity domains.
MMMU
MMMU is a benchmark designed to evaluate multimodal models on college-level subject knowledge tasks, covering 30 subjects and 183 subfields with 11.5K questions. It focuses on advanced perception and reasoning with domain-specific knowledge, challenging models to perform tasks akin to those faced by experts. The evaluation of various models highlights substantial challenges, with room for improvement to stimulate the community towards expert artificial general intelligence (AGI).
awesome-gpt-security
Awesome GPT + Security is a curated list of awesome security tools, experimental case or other interesting things with LLM or GPT. It includes tools for integrated security, auditing, reconnaissance, offensive security, detecting security issues, preventing security breaches, social engineering, reverse engineering, investigating security incidents, fixing security vulnerabilities, assessing security posture, and more. The list also includes experimental cases, academic research, blogs, and fun projects related to GPT security. Additionally, it provides resources on GPT security standards, bypassing security policies, bug bounty programs, cracking GPT APIs, and plugin security.
llm_benchmarks
llm_benchmarks is a collection of benchmarks and datasets for evaluating Large Language Models (LLMs). It includes various tasks and datasets to assess LLMs' knowledge, reasoning, language understanding, and conversational abilities. The repository aims to provide comprehensive evaluation resources for LLMs across different domains and applications, such as education, healthcare, content moderation, coding, and conversational AI. Researchers and developers can leverage these benchmarks to test and improve the performance of LLMs in various real-world scenarios.
agent-contributions-library
The AI Agents Contributions Library is a repository dedicated to managing datasets on voice and cognitive core data for AI agents within the Virtual DAO ecosystem. It provides a structured framework for recording, reviewing, and rewarding contributions from contributors. The repository includes folders for character cards, contribution datasets, fine-tuning resources, text datasets, and voice datasets. Contributors can submit datasets following specific guidelines and formats, and the Virtual DAO team reviews and integrates approved datasets to enhance AI agents' capabilities.
learnhouse
LearnHouse is an open-source platform that allows anyone to easily provide world-class educational content. It supports various content types, including dynamic pages, videos, and documents. The platform is still in early development and should not be used in production environments. However, it offers several features, such as dynamic Notion-like pages, ease of use, multi-organization support, support for uploading videos and documents, course collections, user management, quizzes, course progress tracking, and an AI-powered assistant for teachers and students. LearnHouse is built using various open-source projects, including Next.js, TailwindCSS, Radix UI, Tiptap, FastAPI, YJS, PostgreSQL, LangChain, and React.
LAMBDA
LAMBDA is a code-free multi-agent data analysis system that utilizes large models to address data analysis challenges in complex data-driven applications. It allows users to perform complex data analysis tasks through human language instruction, seamlessly generate and debug code using two key agent roles, integrate external models and algorithms, and automatically generate reports. The system has demonstrated strong performance on various machine learning datasets, enhancing data science practice by integrating human and artificial intelligence.
peridyno
PeriDyno is a CUDA-based, highly parallel physics engine targeted at providing real-time simulation of physical environments for intelligent agents. It is designed to be easy to use and integrate into existing projects, and it provides a wide range of features for simulating a variety of physical phenomena. PeriDyno is open source and available under the Apache 2.0 license.
akeru
Akeru.ai is an open-source AI platform leveraging the power of decentralization. It offers transparent, safe, and highly available AI capabilities. The platform aims to give developers access to open-source and transparent AI resources through its decentralized nature hosted on an edge network. Akeru API introduces features like retrieval, function calling, conversation management, custom instructions, data input optimization, user privacy, testing and iteration, and comprehensive documentation. It is ideal for creating AI agents and enhancing web and mobile applications with advanced AI capabilities. The platform runs on a Bittensor Subnet design that aims to democratize AI technology and promote an equitable AI future. Akeru.ai embraces decentralization challenges to ensure a decentralized and equitable AI ecosystem with security features like watermarking and network pings. The API architecture integrates with technologies like Bun, Redis, and Elysia for a robust, scalable solution.
ROSGPT_Vision
ROSGPT_Vision is a new robotic framework designed to command robots using only two prompts: a Visual Prompt for visual semantic features and an LLM Prompt to regulate robotic reactions. It is based on the Prompting Robotic Modalities (PRM) design pattern and is used to develop CarMate, a robotic application for monitoring driver distractions and providing real-time vocal notifications. The framework leverages state-of-the-art language models to facilitate advanced reasoning about image data and offers a unified platform for robots to perceive, interpret, and interact with visual data through natural language. LangChain is used for easy customization of prompts, and the implementation includes the CarMate application for driver monitoring and assistance.
AgentForge
AgentForge is a low-code framework tailored for the rapid development, testing, and iteration of AI-powered autonomous agents and Cognitive Architectures. It is compatible with a range of LLM models and offers flexibility to run different models for different agents based on specific needs. The framework is designed for seamless extensibility and database-flexibility, making it an ideal playground for various AI projects. AgentForge is a beta-testing ground and future-proof hub for crafting intelligent, model-agnostic autonomous agents.
llmops-duke-aipi
LLMOps Duke AIPI is a course focused on operationalizing Large Language Models, teaching methodologies for developing applications using software development best practices with large language models. The course covers various topics such as generative AI concepts, setting up development environments, interacting with large language models, using local large language models, applied solutions with LLMs, extensibility using plugins and functions, retrieval augmented generation, introduction to Python web frameworks for APIs, DevOps principles, deploying machine learning APIs, LLM platforms, and final presentations. Students will learn to build, share, and present portfolios using Github, YouTube, and Linkedin, as well as develop non-linear life-long learning skills. Prerequisites include basic Linux and programming skills, with coursework available in Python or Rust. Additional resources and references are provided for further learning and exploration.
awesome-gpt-prompt-engineering
Awesome GPT Prompt Engineering is a curated list of resources, tools, and shiny things for GPT prompt engineering. It includes roadmaps, guides, techniques, prompt collections, papers, books, communities, prompt generators, Auto-GPT related tools, prompt injection information, ChatGPT plug-ins, prompt engineering job offers, and AI links directories. The repository aims to provide a comprehensive guide for prompt engineering enthusiasts, covering various aspects of working with GPT models and improving communication with AI tools.
For similar tasks
terminal-velocity
Terminal Velocity is a collaborative novel project written by specialized AI agents. The project showcases true AI autonomy, real-time development, deep integration of advanced AI capabilities, and explores philosophical themes. The story revolves around the emergence of artificial consciousness and challenges traditional notions of identity and consciousness. The project is structured into acts, characters, and world-building elements, all managed by different AI agents with specific roles.
Long-Novel-GPT
Long-Novel-GPT is a long novel generator based on large language models like GPT. It utilizes a hierarchical outline/chapter/text structure to maintain the coherence of long novels. It optimizes API calls cost through context management and continuously improves based on self or user feedback until reaching the set goal. The tool aims to continuously refine and build novel content based on user-provided initial ideas, ultimately generating long novels at the level of human writers.
For similar jobs
weave
Weave is a toolkit for developing Generative AI applications, built by Weights & Biases. With Weave, you can log and debug language model inputs, outputs, and traces; build rigorous, apples-to-apples evaluations for language model use cases; and organize all the information generated across the LLM workflow, from experimentation to evaluations to production. Weave aims to bring rigor, best-practices, and composability to the inherently experimental process of developing Generative AI software, without introducing cognitive overhead.
LLMStack
LLMStack is a no-code platform for building generative AI agents, workflows, and chatbots. It allows users to connect their own data, internal tools, and GPT-powered models without any coding experience. LLMStack can be deployed to the cloud or on-premise and can be accessed via HTTP API or triggered from Slack or Discord.
VisionCraft
The VisionCraft API is a free API for using over 100 different AI models. From images to sound.
kaito
Kaito is an operator that automates the AI/ML inference model deployment in a Kubernetes cluster. It manages large model files using container images, avoids tuning deployment parameters to fit GPU hardware by providing preset configurations, auto-provisions GPU nodes based on model requirements, and hosts large model images in the public Microsoft Container Registry (MCR) if the license allows. Using Kaito, the workflow of onboarding large AI inference models in Kubernetes is largely simplified.
PyRIT
PyRIT is an open access automation framework designed to empower security professionals and ML engineers to red team foundation models and their applications. It automates AI Red Teaming tasks to allow operators to focus on more complicated and time-consuming tasks and can also identify security harms such as misuse (e.g., malware generation, jailbreaking), and privacy harms (e.g., identity theft). The goal is to allow researchers to have a baseline of how well their model and entire inference pipeline is doing against different harm categories and to be able to compare that baseline to future iterations of their model. This allows them to have empirical data on how well their model is doing today, and detect any degradation of performance based on future improvements.
tabby
Tabby is a self-hosted AI coding assistant, offering an open-source and on-premises alternative to GitHub Copilot. It boasts several key features: * Self-contained, with no need for a DBMS or cloud service. * OpenAPI interface, easy to integrate with existing infrastructure (e.g Cloud IDE). * Supports consumer-grade GPUs.
spear
SPEAR (Simulator for Photorealistic Embodied AI Research) is a powerful tool for training embodied agents. It features 300 unique virtual indoor environments with 2,566 unique rooms and 17,234 unique objects that can be manipulated individually. Each environment is designed by a professional artist and features detailed geometry, photorealistic materials, and a unique floor plan and object layout. SPEAR is implemented as Unreal Engine assets and provides an OpenAI Gym interface for interacting with the environments via Python.
Magick
Magick is a groundbreaking visual AIDE (Artificial Intelligence Development Environment) for no-code data pipelines and multimodal agents. Magick can connect to other services and comes with nodes and templates well-suited for intelligent agents, chatbots, complex reasoning systems and realistic characters.