
roo-code-memory-bank
🧠 Roo Code Memory Bank - Now with new debug mode! (Thanks @TheRealAlexV) Solve the AI context challenge: maintain deep project understanding across sessions with our structured VS Code memory system. Never repeat project details again! ✨
Stars: 200

Roo Code Memory Bank is a tool designed for AI-assisted development to maintain project context across sessions. It provides a structured memory system integrated with VS Code, ensuring deep understanding of the project for the AI assistant. The tool includes key components such as Memory Bank for persistent storage, Mode Rules for behavior configuration, VS Code Integration for seamless development experience, and Real-time Updates for continuous context synchronization. Users can configure custom instructions, initialize the Memory Bank, and organize files within the project root directory. The Memory Bank structure includes files for tracking session state, technical decisions, project overview, progress tracking, and optional project brief and system patterns documentation. Features include persistent context, smart workflows for specialized tasks, knowledge management with structured documentation, and cross-referenced project knowledge. Pro tips include handling multiple projects, utilizing Debug mode for troubleshooting, and managing session updates for synchronization. The tool aims to enhance AI-assisted development by providing a comprehensive solution for maintaining project context and facilitating efficient workflows.
README:
Roo Code Memory Bank solves a critical challenge in AI-assisted development: maintaining context across sessions. By providing a structured memory system integrated with VS Code, it ensures your AI assistant maintains a deep understanding of your project across sessions.
graph LR
A[Memory Bank] --> B[Core Files]
A --> C[Mode Rules]
A --> D[VS Code UI]
B --> E[Project Context]
B --> F[Decisions]
B --> G[Progress]
C --> H[Architect]
C --> I[Code]
C --> J[Ask]
C --> K1[Debug]
K[Real-time Updates] --> B
K --> L[Continuous Sync]
L --> M[Auto-save]
L --> N[Event Tracking]
- 🧠 Memory Bank: Persistent storage for project knowledge
- 📋 Mode Rules: YAML-based behavior configuration
- 🔧 VS Code Integration: Seamless development experience
- ⚡ Real-time Updates: Continuous context synchronization
Download and copy these files to your project's root directory:
Mode | Rule File | Purpose |
---|---|---|
Code | .clinerules-code |
Implementation and coding tasks |
Architect | .clinerules-architect |
System design and architecture |
Ask | .clinerules-ask |
Information and assistance |
Debug | .clinerules-debug |
Troubleshooting and problem-solving |
Modes | .roomodes |
Additional modes |
⚠️ Important: Leave the "Custom Instructions" text boxes empty in VS Code settings (Roo Code Prompts section)
- Switch to Architect or Code mode in Roo Code chat
- Send a message (e.g., "hello")
- Roo will automatically:
- 🔍 Scan for
memory-bank/
directory - 📁 Create it if missing (with your approval)
- 📝 Initialize core files
- 🚦 Provide next steps
- 🔍 Scan for
💡 Pro Tip: Project Brief
Create a projectBrief.md
in your project root before initialization to give Roo immediate project context.
project-root/
├── .clinerules-architect
├── .clinerules-code
├── .clinerules-ask
├── .clinerules-debug
├── .roomodes
├── memory-bank/
│ ├── activeContext.md
│ ├── productContext.md
│ ├── progress.md
│ └── decisionLog.md
└── projectBrief.md
graph TD
MB[memory-bank/] --> AC[activeContext.md]
MB --> DL[decisionLog.md]
MB --> PC[productContext.md]
MB --> PR[progress.md]
MB --> PB[projectBrief.md]
MB --> SP[systemPatterns.md]
subgraph Core Files
AC[Current Session State]
DL[Technical Decisions]
PC[Project Overview]
PR[Progress Tracking]
end
subgraph Optional
PB[Project Brief]
SP[System Patterns]
end
📖 View File Descriptions
File | Purpose |
---|---|
activeContext.md |
Tracks current goals, decisions, and session state |
decisionLog.md |
Records architectural choices and their rationale |
productContext.md |
Maintains high-level project context and knowledge |
progress.md |
Documents completed work and upcoming tasks |
projectBrief.md |
Contains initial project requirements (optional) |
systemPatterns.md |
Documents recurring patterns and standards |
- Remembers project details across sessions
- Maintains consistent understanding of your codebase
- Tracks decisions and their rationale
graph LR
A[Architect Mode] -->|Real-time Design Updates| B[Memory Bank]
C[Code Mode] -->|Real-time Implementation| B
D[Ask Mode] -->|Real-time Insights| B
F[Debug Mode] -->|Real-time Analysis| B
B -->|Instant Context| A
B -->|Instant Context| C
B -->|Instant Context| D
B -->|Instant Context| F
E[Event Monitor] -->|Continuous Sync| B
- Mode-based operation for specialized tasks
- Automatic context switching
- Project-specific customization via rules
- Structured documentation with clear purposes
- Technical decision tracking with rationale
- Automated progress monitoring
- Cross-referenced project knowledge
graph TD
A[Workspace] --> B[Project 1]
A --> C[Project 2]
B --> D[memory-bank/]
C --> E[memory-bank/]
D --> F[Automatic Detection]
E --> F
Roo automatically handles multiple Memory Banks in your workspace!
Roo Code Memory Bank includes a powerful Debug mode for systematic troubleshooting and problem-solving. This mode operates with surgical precision, focusing on root cause analysis and evidence-based verification.
- 🔍 Non-destructive Investigation: Read-only access ensures system integrity during analysis
- 📊 Diagnostic Tools: Access to logging, tracing, and system analysis tools
- 🔬 Systematic Analysis: Methodical problem investigation and isolation
- 🎯 Root Cause Identification: Traces error propagation through all system layers
- ✅ Evidence-based Verification: Validates findings through multiple checkpoints
Debug mode actively monitors and updates Memory Bank files based on:
- 🐛 Bug discoveries and error patterns
- 💾 Memory leaks and resource issues
- 🔄 Race conditions and deadlocks
- 📈 Performance bottlenecks
- 📝 Log analysis and trace outputs
graph TD
A[Debug Mode] --> B[Analysis]
B --> C[Findings]
C --> D[Memory Bank Updates]
D --> E[activeContext.md]
D --> F[progress.md]
D --> G[decisionLog.md]
E --> H[Current Issues]
F --> I[Debug Progress]
G --> J[Solution Decisions]
Switch to Debug mode when you need to:
- Investigate system behavior
- Analyze failure patterns
- Isolate root causes
- Verify fixes
- Document debugging insights
- ⚡ Real-time Updates: Memory Bank automatically stays synchronized with your work
- 💾 Manual Updates: Use "UMB" or "update memory bank" as a fallback when:
- Ending a session unexpectedly
- Halting mid-task
- Recovering from connection issues
- Forcing a full synchronization
Apache 2.0 © 2025 GreatScottyMac
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for roo-code-memory-bank
Similar Open Source Tools

roo-code-memory-bank
Roo Code Memory Bank is a tool designed for AI-assisted development to maintain project context across sessions. It provides a structured memory system integrated with VS Code, ensuring deep understanding of the project for the AI assistant. The tool includes key components such as Memory Bank for persistent storage, Mode Rules for behavior configuration, VS Code Integration for seamless development experience, and Real-time Updates for continuous context synchronization. Users can configure custom instructions, initialize the Memory Bank, and organize files within the project root directory. The Memory Bank structure includes files for tracking session state, technical decisions, project overview, progress tracking, and optional project brief and system patterns documentation. Features include persistent context, smart workflows for specialized tasks, knowledge management with structured documentation, and cross-referenced project knowledge. Pro tips include handling multiple projects, utilizing Debug mode for troubleshooting, and managing session updates for synchronization. The tool aims to enhance AI-assisted development by providing a comprehensive solution for maintaining project context and facilitating efficient workflows.

GMTalker
GMTalker is an interactive digital human rendered by Unreal Engine, developed by the Media Intelligence Team at Bright Laboratory. The system integrates speech recognition, speech synthesis, natural language understanding, and lip-sync animation driving. It supports rapid deployment on Windows with only 2GB of VRAM required. The project showcases two 3D cartoon digital human avatars suitable for presentations, expansions, and commercial integration.

hia
HIA (Health Insights Agent) is an AI agent designed to analyze blood reports and provide personalized health insights. It features an intelligent agent-based architecture with multi-model cascade system, in-context learning, PDF upload and text extraction, secure user authentication, session history tracking, and a modern UI. The tech stack includes Streamlit for frontend, Groq for AI integration, Supabase for database, PDFPlumber for PDF processing, and Supabase Auth for authentication. The project structure includes components for authentication, UI, configuration, services, agents, and utilities. Contributions are welcome, and the project is licensed under MIT.

llm4s
LLM4S provides a simple, robust, and scalable framework for building Large Language Models (LLM) applications in Scala. It aims to leverage Scala's type safety, functional programming, JVM ecosystem, concurrency, and performance advantages to create reliable and maintainable AI-powered applications. The framework supports multi-provider integration, execution environments, error handling, Model Context Protocol (MCP) support, agent frameworks, multimodal generation, and Retrieval-Augmented Generation (RAG) workflows. It also offers observability features like detailed trace logging, monitoring, and analytics for debugging and performance insights.

WeKnora
WeKnora is a document understanding and semantic retrieval framework based on large language models (LLM), designed specifically for scenarios with complex structures and heterogeneous content. The framework adopts a modular architecture, integrating multimodal preprocessing, semantic vector indexing, intelligent recall, and large model generation reasoning to build an efficient and controllable document question-answering process. The core retrieval process is based on the RAG (Retrieval-Augmented Generation) mechanism, combining context-relevant segments with language models to achieve higher-quality semantic answers. It supports various document formats, intelligent inference, flexible extension, efficient retrieval, ease of use, and security and control. Suitable for enterprise knowledge management, scientific literature analysis, product technical support, legal compliance review, and medical knowledge assistance.

open-health
OpenHealth is an AI health assistant that helps users manage their health data by leveraging AI and personal health information. It allows users to consolidate health data, parse it smartly, and engage in contextual conversations with GPT-powered AI. The tool supports various data sources like blood test results, health checkup data, personal physical information, family history, and symptoms. OpenHealth aims to empower users to take control of their health by combining data and intelligence for actionable health management.

Starmoon
Starmoon is an affordable, compact AI-enabled device that can understand and respond to your emotions with empathy. It offers supportive conversations and personalized learning assistance. The device is cost-effective, voice-enabled, open-source, compact, and aims to reduce screen time. Users can assemble the device themselves using off-the-shelf components and deploy it locally for data privacy. Starmoon integrates various APIs for AI language models, speech-to-text, text-to-speech, and emotion intelligence. The hardware setup involves components like ESP32S3, microphone, amplifier, speaker, LED light, and button, along with software setup instructions for developers. The project also includes a web app, backend API, and background task dashboard for monitoring and management.

local-deep-research
Local Deep Research is a powerful AI-powered research assistant that performs deep, iterative analysis using multiple LLMs and web searches. It can be run locally for privacy or configured to use cloud-based LLMs for enhanced capabilities. The tool offers advanced research capabilities, flexible LLM support, rich output options, privacy-focused operation, enhanced search integration, and academic & scientific integration. It also provides a web interface, command line interface, and supports multiple LLM providers and search engines. Users can configure AI models, search engines, and research parameters for customized research experiences.

monoscope
Monoscope is an open-source monitoring and observability platform that uses artificial intelligence to understand and monitor systems automatically. It allows users to ingest and explore logs, traces, and metrics in S3 buckets, query in natural language via LLMs, and create AI agents to detect anomalies. Key capabilities include universal data ingestion, AI-powered understanding, natural language interface, cost-effective storage, and zero configuration. Monoscope is designed to reduce alert fatigue, catch issues before they impact users, and provide visibility across complex systems.

eko
Eko is a lightweight and flexible command-line tool for managing environment variables in your projects. It allows you to easily set, get, and delete environment variables for different environments, making it simple to manage configurations across development, staging, and production environments. With Eko, you can streamline your workflow and ensure consistency in your application settings without the need for complex setup or configuration files.

RookieAI_yolov8
RookieAI_yolov8 is an open-source project designed for developers and users interested in utilizing YOLOv8 models for object detection tasks. The project provides instructions for setting up the required libraries and Pytorch, as well as guidance on using custom or official YOLOv8 models. Users can easily train their own models and integrate them with the software. The tool offers features for packaging the code, managing model files, and organizing the necessary resources for running the software. It also includes updates and optimizations for better performance and functionality, with a focus on FPS game aimbot functionalities. The project aims to provide a comprehensive solution for object detection tasks using YOLOv8 models.

simba
Simba is an open source, portable Knowledge Management System (KMS) designed to seamlessly integrate with any Retrieval-Augmented Generation (RAG) system. It features a modern UI and modular architecture, allowing developers to focus on building advanced AI solutions without the complexities of knowledge management. Simba offers a user-friendly interface to visualize and modify document chunks, supports various vector stores and embedding models, and simplifies knowledge management for developers. It is community-driven, extensible, and aims to enhance AI functionality by providing a seamless integration with RAG-based systems.

evalchemy
Evalchemy is a unified and easy-to-use toolkit for evaluating language models, focusing on post-trained models. It integrates multiple existing benchmarks such as RepoBench, AlpacaEval, and ZeroEval. Key features include unified installation, parallel evaluation, simplified usage, and results management. Users can run various benchmarks with a consistent command-line interface and track results locally or integrate with a database for systematic tracking and leaderboard submission.

R2R
R2R (RAG to Riches) is a fast and efficient framework for serving high-quality Retrieval-Augmented Generation (RAG) to end users. The framework is designed with customizable pipelines and a feature-rich FastAPI implementation, enabling developers to quickly deploy and scale RAG-based applications. R2R was conceived to bridge the gap between local LLM experimentation and scalable production solutions. **R2R is to LangChain/LlamaIndex what NextJS is to React**. A JavaScript client for R2R deployments can be found here. ### Key Features * **🚀 Deploy** : Instantly launch production-ready RAG pipelines with streaming capabilities. * **🧩 Customize** : Tailor your pipeline with intuitive configuration files. * **🔌 Extend** : Enhance your pipeline with custom code integrations. * **⚖️ Autoscale** : Scale your pipeline effortlessly in the cloud using SciPhi. * **🤖 OSS** : Benefit from a framework developed by the open-source community, designed to simplify RAG deployment.

zcf
ZCF (Zero-Config Claude-Code Flow) is a tool that provides zero-configuration, one-click setup for Claude Code with bilingual support, intelligent agent system, and personalized AI assistant. It offers an interactive menu for easy operations and direct commands for quick execution. The tool supports bilingual operation with automatic language switching and customizable AI output styles. ZCF also includes features like BMad Workflow for enterprise-grade workflow system, Spec Workflow for structured feature development, CCR (Claude Code Router) support for proxy routing, and CCometixLine for real-time usage tracking. It provides smart installation, complete configuration management, and core features like professional agents, command system, and smart configuration. ZCF is cross-platform compatible, supports Windows and Termux environments, and includes security features like dangerous operation confirmation mechanism.

Automodel
Automodel is a Python library for automating the process of building and evaluating machine learning models. It provides a set of tools and utilities to streamline the model development workflow, from data preprocessing to model selection and evaluation. With Automodel, users can easily experiment with different algorithms, hyperparameters, and feature engineering techniques to find the best model for their dataset. The library is designed to be user-friendly and customizable, allowing users to define their own pipelines and workflows. Automodel is suitable for data scientists, machine learning engineers, and anyone looking to quickly build and test machine learning models without the need for manual intervention.
For similar tasks

roo-code-memory-bank
Roo Code Memory Bank is a tool designed for AI-assisted development to maintain project context across sessions. It provides a structured memory system integrated with VS Code, ensuring deep understanding of the project for the AI assistant. The tool includes key components such as Memory Bank for persistent storage, Mode Rules for behavior configuration, VS Code Integration for seamless development experience, and Real-time Updates for continuous context synchronization. Users can configure custom instructions, initialize the Memory Bank, and organize files within the project root directory. The Memory Bank structure includes files for tracking session state, technical decisions, project overview, progress tracking, and optional project brief and system patterns documentation. Features include persistent context, smart workflows for specialized tasks, knowledge management with structured documentation, and cross-referenced project knowledge. Pro tips include handling multiple projects, utilizing Debug mode for troubleshooting, and managing session updates for synchronization. The tool aims to enhance AI-assisted development by providing a comprehensive solution for maintaining project context and facilitating efficient workflows.
For similar jobs

sweep
Sweep is an AI junior developer that turns bugs and feature requests into code changes. It automatically handles developer experience improvements like adding type hints and improving test coverage.

teams-ai
The Teams AI Library is a software development kit (SDK) that helps developers create bots that can interact with Teams and Microsoft 365 applications. It is built on top of the Bot Framework SDK and simplifies the process of developing bots that interact with Teams' artificial intelligence capabilities. The SDK is available for JavaScript/TypeScript, .NET, and Python.

ai-guide
This guide is dedicated to Large Language Models (LLMs) that you can run on your home computer. It assumes your PC is a lower-end, non-gaming setup.

classifai
Supercharge WordPress Content Workflows and Engagement with Artificial Intelligence. Tap into leading cloud-based services like OpenAI, Microsoft Azure AI, Google Gemini and IBM Watson to augment your WordPress-powered websites. Publish content faster while improving SEO performance and increasing audience engagement. ClassifAI integrates Artificial Intelligence and Machine Learning technologies to lighten your workload and eliminate tedious tasks, giving you more time to create original content that matters.

chatbot-ui
Chatbot UI is an open-source AI chat app that allows users to create and deploy their own AI chatbots. It is easy to use and can be customized to fit any need. Chatbot UI is perfect for businesses, developers, and anyone who wants to create a chatbot.

BricksLLM
BricksLLM is a cloud native AI gateway written in Go. Currently, it provides native support for OpenAI, Anthropic, Azure OpenAI and vLLM. BricksLLM aims to provide enterprise level infrastructure that can power any LLM production use cases. Here are some use cases for BricksLLM: * Set LLM usage limits for users on different pricing tiers * Track LLM usage on a per user and per organization basis * Block or redact requests containing PIIs * Improve LLM reliability with failovers, retries and caching * Distribute API keys with rate limits and cost limits for internal development/production use cases * Distribute API keys with rate limits and cost limits for students

uAgents
uAgents is a Python library developed by Fetch.ai that allows for the creation of autonomous AI agents. These agents can perform various tasks on a schedule or take action on various events. uAgents are easy to create and manage, and they are connected to a fast-growing network of other uAgents. They are also secure, with cryptographically secured messages and wallets.

griptape
Griptape is a modular Python framework for building AI-powered applications that securely connect to your enterprise data and APIs. It offers developers the ability to maintain control and flexibility at every step. Griptape's core components include Structures (Agents, Pipelines, and Workflows), Tasks, Tools, Memory (Conversation Memory, Task Memory, and Meta Memory), Drivers (Prompt and Embedding Drivers, Vector Store Drivers, Image Generation Drivers, Image Query Drivers, SQL Drivers, Web Scraper Drivers, and Conversation Memory Drivers), Engines (Query Engines, Extraction Engines, Summary Engines, Image Generation Engines, and Image Query Engines), and additional components (Rulesets, Loaders, Artifacts, Chunkers, and Tokenizers). Griptape enables developers to create AI-powered applications with ease and efficiency.