open-source-ops
Полезные советы для open-source разработок (в том числе в области AI/ML)
Stars: 114
This repository contains various tools, scripts, instructions, and guides that can be useful when creating open-source projects. All materials are available under the BSD-3 license.
README:
Этот репозиторий создан для хранения различных инструментов, скриптов, инструкций и руководств, которые могут быть полезны при создании проектов с открытым исходным кодом. Все материалы доступны под лицензией BSD-3.
- Мы на ODS - ITMO Opensource;
- Инициатива Awesome Open-Source to Try.
- Наше исследование ML/Data-опенсорса в России.
- С чего начать разработку open-source библиотеки;
- Зеркалирование GitHub -> GitLab;
- Мультиязычные README;
- Создание документации (mkdocs);
- Создание документации (rtd);
- Настройка ботов для репозитория;
- Работа с Git;
- Автоформатирование кода (black).
- Типовый шаблон README для open-source проектов (Версия в RST формате).
- Организация управления open-source проектом;
- Полезные ссылки для авторов open-source библиотек;
- Лучшие практики Open Source разработки;
- Советы по работе в Pull Request-ах;
- Антипаттерны Open Source разработки;
- Советы по популяризации репозитория.
- Репозитории научных подразделений и лабораторий;
- Репозитории открытых проектов коммерческих компаний;
- Список репозиториев open-source проектов AIM;
- Pet-проекты, связанные с наукой;
- Научно-популярные посты о open-source в ИТМО;
- Хакатоны с open-source трэками.
От авторов репозитория:
- Научный опенсорс - канал с новостями нашего сообщества и области научного open-source в целом;
- ITMO.Opensource - чат сообщества ITMO Opensource;
- ITMO.Opensource/eng - англоязычный вариант чата для иностранных коллег;
- NSS Lab News - новости нашей лаборатории.
Внешние:
- SPC - канал Центра Научного программирования МФТИ.
- Открытый код ФКН ВШЭ - канал новостей по открытому коду от ФКН ВШЭ.
- Open Source Россия](https://t.me/OpenSourceRu) - крупный чат про открытый код в целом.
- Open-source meetup №1: видео, презентации;
- Open-source meetup №2: видео, презентации;
- Open-source meetup №3: видео, презентации;
- Open-source meetup №4: видео, презентации;
- Open-source meetup №5: видео, презентации;
- Open-source meetup №6: видео, презентации;
- Open-source meetup №7: видео, презентации.
- Open-source meetup №8: видео, презентации.
- Разборка кода №1: видео.
Репозиторий и связанные с ним активности финансируются Университетом ИТМО в рамках НИР магистров и аспирантов №623089 "Технологии повышения практической применимости и взаимной интеграции научных проектов с открытым исходным кодом" (2023-2024).
- aimclub - библиотеки и фреймворки ИТМО в области AI/ML;
- ITMO-NSS-team - открытый код, связанный с научными разработками нашей лаборатории;
- itmo-ai - открытые ИИ-мероприятия ИТМО, открытые данные и т.д.
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for open-source-ops
Similar Open Source Tools
open-source-ops
This repository contains various tools, scripts, instructions, and guides that can be useful when creating open-source projects. All materials are available under the BSD-3 license.
awesome-cuda-tensorrt-fpga
Okay, here is a JSON object with the requested information about the awesome-cuda-tensorrt-fpga repository:
cf-proxy-ex
Cloudflare Proxy EX is a tool that provides Cloudflare super proxy, OpenAI/ChatGPT proxy, Github acceleration, and online proxy services. It allows users to create a worker in Cloudflare website by copying the content from worker.js file, and add their domain name before any URL to use the tool. The tool is an improvement based on gaboolic's cloudflare-reverse-proxy, offering features like removing '/proxy/', handling redirection events, modifying headers, converting relative paths to absolute paths, and more. It aims to enhance proxy functionality and address issues faced by some websites. However, users are advised not to log in to any website through the online proxy due to potential security risks.
AIBotPublic
AIBotPublic is an open-source version of AIBotPro, a comprehensive AI tool that provides various features such as knowledge base construction, AI drawing, API hosting, and more. It supports custom plugins and parallel processing of multiple files. The tool is built using bootstrap4 for the frontend, .NET6.0 for the backend, and utilizes technologies like SqlServer, Redis, and Milvus for database and vector database functionalities. It integrates third-party dependencies like Baidu AI OCR, Milvus C# SDK, Google Search, and more to enhance its capabilities.
apo
AutoPilot Observability (APO) is an out-of-the-box observability platform that provides one-click installation and ready-to-use capabilities. APO's OneAgent supports one-click configuration-free installation of Tracing probes, collects application fault scene logs, infrastructure metrics, network metrics of applications and downstream dependencies, and Kubernetes events. It supports collecting causality metrics based on eBPF implementation. APO integrates OpenTelemetry probes, otel-collector, Jaeger, ClickHouse, and VictoriaMetrics, reducing user configuration work. APO innovatively integrates eBPF technology with the OpenTelemetry ecosystem, significantly reducing data storage volume. It offers guided troubleshooting using eBPF technology to assist users in pinpointing fault causes on a single page.
LLMForEverybody
LLMForEverybody is a comprehensive repository covering various aspects of large language models (LLMs) including pre-training, architecture, optimizers, activation functions, attention mechanisms, tokenization, parallel strategies, training frameworks, deployment, fine-tuning, quantization, GPU parallelism, prompt engineering, agent design, RAG architecture, enterprise deployment challenges, evaluation metrics, and current hot topics in the field. It provides detailed explanations, tutorials, and insights into the workings and applications of LLMs, making it a valuable resource for researchers, developers, and enthusiasts interested in understanding and working with large language models.
For similar tasks
open-source-ops
This repository contains various tools, scripts, instructions, and guides that can be useful when creating open-source projects. All materials are available under the BSD-3 license.
For similar jobs
weave
Weave is a toolkit for developing Generative AI applications, built by Weights & Biases. With Weave, you can log and debug language model inputs, outputs, and traces; build rigorous, apples-to-apples evaluations for language model use cases; and organize all the information generated across the LLM workflow, from experimentation to evaluations to production. Weave aims to bring rigor, best-practices, and composability to the inherently experimental process of developing Generative AI software, without introducing cognitive overhead.
agentcloud
AgentCloud is an open-source platform that enables companies to build and deploy private LLM chat apps, empowering teams to securely interact with their data. It comprises three main components: Agent Backend, Webapp, and Vector Proxy. To run this project locally, clone the repository, install Docker, and start the services. The project is licensed under the GNU Affero General Public License, version 3 only. Contributions and feedback are welcome from the community.
oss-fuzz-gen
This framework generates fuzz targets for real-world `C`/`C++` projects with various Large Language Models (LLM) and benchmarks them via the `OSS-Fuzz` platform. It manages to successfully leverage LLMs to generate valid fuzz targets (which generate non-zero coverage increase) for 160 C/C++ projects. The maximum line coverage increase is 29% from the existing human-written targets.
LLMStack
LLMStack is a no-code platform for building generative AI agents, workflows, and chatbots. It allows users to connect their own data, internal tools, and GPT-powered models without any coding experience. LLMStack can be deployed to the cloud or on-premise and can be accessed via HTTP API or triggered from Slack or Discord.
VisionCraft
The VisionCraft API is a free API for using over 100 different AI models. From images to sound.
kaito
Kaito is an operator that automates the AI/ML inference model deployment in a Kubernetes cluster. It manages large model files using container images, avoids tuning deployment parameters to fit GPU hardware by providing preset configurations, auto-provisions GPU nodes based on model requirements, and hosts large model images in the public Microsoft Container Registry (MCR) if the license allows. Using Kaito, the workflow of onboarding large AI inference models in Kubernetes is largely simplified.
PyRIT
PyRIT is an open access automation framework designed to empower security professionals and ML engineers to red team foundation models and their applications. It automates AI Red Teaming tasks to allow operators to focus on more complicated and time-consuming tasks and can also identify security harms such as misuse (e.g., malware generation, jailbreaking), and privacy harms (e.g., identity theft). The goal is to allow researchers to have a baseline of how well their model and entire inference pipeline is doing against different harm categories and to be able to compare that baseline to future iterations of their model. This allows them to have empirical data on how well their model is doing today, and detect any degradation of performance based on future improvements.
Azure-Analytics-and-AI-Engagement
The Azure-Analytics-and-AI-Engagement repository provides packaged Industry Scenario DREAM Demos with ARM templates (Containing a demo web application, Power BI reports, Synapse resources, AML Notebooks etc.) that can be deployed in a customer’s subscription using the CAPE tool within a matter of few hours. Partners can also deploy DREAM Demos in their own subscriptions using DPoC.