daily_stock_analysis
LLM驱动的 A/H/美股智能分析器,多数据源行情 + 实时新闻 + Gemini 决策仪表盘 + 多渠道推送,零成本,纯白嫖,定时运行
Stars: 10661
The daily_stock_analysis repository is an intelligent stock analysis system based on AI large models for A-share/Hong Kong stock/US stock selection. It automatically analyzes and pushes a 'decision dashboard' to WeChat Work/Feishu/Telegram/email daily. The system features multi-dimensional analysis, global market support, market review, AI backtesting validation, multi-channel notifications, and scheduled execution using GitHub Actions. It utilizes AI models like Gemini, OpenAI, DeepSeek, and data sources like AkShare, Tushare, Pytdx, Baostock, YFinance for analysis. The system includes built-in trading disciplines like risk warning, trend trading, precise entry/exit points, and checklist marking for conditions.
README:
🤖 基于 AI 大模型的 A股/港股/美股自选股智能分析系统,每日自动分析并推送「决策仪表盘」到企业微信/飞书/Telegram/邮箱
| 模块 | 功能 | 说明 |
|---|---|---|
| AI | 决策仪表盘 | 一句话核心结论 + 精确买卖点位 + 操作检查清单 |
| 分析 | 多维度分析 | 技术面 + 筹码分布 + 舆情情报 + 实时行情 |
| 市场 | 全球市场 | 支持 A股、港股、美股 |
| 复盘 | 大盘复盘 | 每日市场概览、板块涨跌、北向资金 |
| 回测 | AI 回测验证 | 自动评估历史分析准确率,方向胜率、止盈止损命中率 |
| 推送 | 多渠道通知 | 企业微信、飞书、Telegram、钉钉、邮件、Pushover |
| 自动化 | 定时运行 | GitHub Actions 定时执行,无需服务器 |
| 类型 | 支持 |
|---|---|
| AI 模型 | Gemini(免费)、OpenAI 兼容、DeepSeek、通义千问、Claude、Ollama |
| 行情数据 | AkShare、Tushare、Pytdx、Baostock、YFinance |
| 新闻搜索 | Tavily、SerpAPI、Bocha、Brave |
| 规则 | 说明 |
|---|---|
| 严禁追高 | 乖离率 > 5% 自动提示风险 |
| 趋势交易 | MA5 > MA10 > MA20 多头排列 |
| 精确点位 | 买入价、止损价、目标价 |
| 检查清单 | 每项条件以「满足 / 注意 / 不满足」标记 |
5 分钟完成部署,零成本,无需服务器。
点击右上角 Fork 按钮(顺便点个 Star⭐ 支持一下)
Settings → Secrets and variables → Actions → New repository secret
AI 模型配置(二选一)
| Secret 名称 | 说明 | 必填 |
|---|---|---|
GEMINI_API_KEY |
Google AI Studio 获取免费 Key | ✅* |
OPENAI_API_KEY |
OpenAI 兼容 API Key(支持 DeepSeek、通义千问等) | 可选 |
OPENAI_BASE_URL |
OpenAI 兼容 API 地址(如 https://api.deepseek.com/v1) |
可选 |
OPENAI_MODEL |
模型名称(如 deepseek-chat) |
可选 |
注:
GEMINI_API_KEY和OPENAI_API_KEY至少配置一个
通知渠道配置(点击展开,至少配置一个)
| Secret 名称 | 说明 | 必填 |
|---|---|---|
WECHAT_WEBHOOK_URL |
企业微信 Webhook URL | 可选 |
FEISHU_WEBHOOK_URL |
飞书 Webhook URL | 可选 |
TELEGRAM_BOT_TOKEN |
Telegram Bot Token(@BotFather 获取) | 可选 |
TELEGRAM_CHAT_ID |
Telegram Chat ID | 可选 |
TELEGRAM_MESSAGE_THREAD_ID |
Telegram Topic ID (用于发送到子话题) | 可选 |
EMAIL_SENDER |
发件人邮箱(如 [email protected]) |
可选 |
EMAIL_PASSWORD |
邮箱授权码(非登录密码) | 可选 |
EMAIL_RECEIVERS |
收件人邮箱(多个用逗号分隔,留空则发给自己) | 可选 |
EMAIL_SENDER_NAME |
邮件发件人显示名称(默认:daily_stock_analysis股票分析助手) | 可选 |
PUSHPLUS_TOKEN |
PushPlus Token(获取地址,国内推送服务) | 可选 |
SERVERCHAN3_SENDKEY |
Server酱³ Sendkey(获取地址,手机APP推送服务) | 可选 |
CUSTOM_WEBHOOK_URLS |
自定义 Webhook(支持钉钉等,多个用逗号分隔) | 可选 |
CUSTOM_WEBHOOK_BEARER_TOKEN |
自定义 Webhook 的 Bearer Token(用于需要认证的 Webhook) | 可选 |
SINGLE_STOCK_NOTIFY |
单股推送模式:设为 true 则每分析完一只股票立即推送 |
可选 |
REPORT_TYPE |
报告类型:simple(精简) 或 full(完整),Docker环境推荐设为 full
|
可选 |
ANALYSIS_DELAY |
个股分析和大盘分析之间的延迟(秒),避免API限流,如 10
|
可选 |
至少配置一个渠道,配置多个则同时推送。更多配置请参考 完整指南
其他配置
| Secret 名称 | 说明 | 必填 |
|---|---|---|
STOCK_LIST |
自选股代码,如 600519,hk00700,AAPL,TSLA
|
✅ |
TAVILY_API_KEYS |
Tavily 搜索 API(新闻搜索) | 推荐 |
SERPAPI_API_KEYS |
SerpAPI 全渠道搜索 | 可选 |
BOCHA_API_KEYS |
博查搜索 Web Search API(中文搜索优化,支持AI摘要,多个key用逗号分隔) | 可选 |
BRAVE_API_KEYS |
Brave Search API(隐私优先,美股优化,多个key用逗号分隔) | 可选 |
TUSHARE_TOKEN |
Tushare Pro Token | 可选 |
WECHAT_MSG_TYPE |
企微消息类型,默认 markdown,支持配置 text 类型,发送纯 markdown 文本 | 可选 |
Actions 标签 → I understand my workflows, go ahead and enable them
Actions → 每日股票分析 → Run workflow → Run workflow
默认每个**工作日 18:00(北京时间)**自动执行,也可手动触发
# 克隆项目
git clone https://github.com/ZhuLinsen/daily_stock_analysis.git && cd daily_stock_analysis
# 安装依赖
pip install -r requirements.txt
# 配置环境变量
cp .env.example .env && vim .env
# 运行分析
python main.pyDocker 部署、定时任务配置请参考 完整指南
🎯 2026-02-08 决策仪表盘
共分析3只股票 | 🟢买入:0 🟡观望:2 🔴卖出:1
📊 分析结果摘要
⚪ 中钨高新(000657): 观望 | 评分 65 | 看多
⚪ 永鼎股份(600105): 观望 | 评分 48 | 震荡
🟡 新莱应材(300260): 卖出 | 评分 35 | 看空
⚪ 中钨高新 (000657)
📰 重要信息速览
💭 舆情情绪: 市场关注其AI属性与业绩高增长,情绪偏积极,但需消化短期获利盘和主力流出压力。
📊 业绩预期: 基于舆情信息,公司2025年前三季度业绩同比大幅增长,基本面强劲,为股价提供支撑。
🚨 风险警报:
风险点1:2月5日主力资金大幅净卖出3.63亿元,需警惕短期抛压。
风险点2:筹码集中度高达35.15%,表明筹码分散,拉升阻力可能较大。
风险点3:舆情中提及公司历史违规记录及重组相关风险提示,需保持关注。
✨ 利好催化:
利好1:公司被市场定位为AI服务器HDI核心供应商,受益于AI产业发展。
利好2:2025年前三季度扣非净利润同比暴涨407.52%,业绩表现强劲。
📢 最新动态: 【最新消息】舆情显示公司是AI PCB微钻领域龙头,深度绑定全球头部PCB/载板厂。2月5日主力资金净卖出3.63亿元,需关注后续资金流向。
---
生成时间: 18:00
🎯 2026-01-10 大盘复盘
📊 主要指数
- 上证指数: 3250.12 (🟢+0.85%)
- 深证成指: 10521.36 (🟢+1.02%)
- 创业板指: 2156.78 (🟢+1.35%)
📈 市场概况
上涨: 3920 | 下跌: 1349 | 涨停: 155 | 跌停: 3
🔥 板块表现
领涨: 互联网服务、文化传媒、小金属
领跌: 保险、航空机场、光伏设备
📖 完整环境变量、定时任务配置请参考 完整配置指南
包含完整的配置管理、任务监控和手动分析功能。
-
编译前端 (首次运行需要)
cd ./apps/dsa-web npm install && npm run build cd ../..
-
启动服务
python main.py --webui # 启动 Web 界面 + 执行定时分析 python main.py --webui-only # 仅启动 Web 界面
访问 http://127.0.0.1:8000 即可使用。
也可以使用
python main.py --serve(等效命令)
查看已支持的功能和未来规划:更新日志
有建议?欢迎 提交 Issue
如果本项目对你有帮助,欢迎支持项目的持续维护与迭代,感谢支持 🙏
赞赏可备注联系方式,祝股市长虹
| 支付宝 (Alipay) | 微信支付 (WeChat) | Ko-fi |
|---|---|---|
![]() |
![]() |
![]() |
欢迎提交 Issue 和 Pull Request!
详见 贡献指南
MIT License © 2026 ZhuLinsen
如果你在项目中使用或基于本项目进行二次开发, 非常欢迎在 README 或文档中注明来源并附上本仓库链接。 这将有助于项目的持续维护和社区发展。
- GitHub Issues:提交 Issue
如果觉得有用,请给个 ⭐ Star 支持一下!
本项目仅供学习和研究使用,不构成任何投资建议。股市有风险,投资需谨慎。作者不对使用本项目产生的任何损失负责。
For Tasks:
Click tags to check more tools for each tasksFor Jobs:
Alternative AI tools for daily_stock_analysis
Similar Open Source Tools
For similar tasks
frontend
The frontend repository for Stocknear, an open-source stock analysis and community platform powered by Sveltekit, Tailwindcss, and DaisyUI. The core idea of Stocknear is to be fast and simple, welcoming contributions that focus on refactoring slow code into fast code and increasing simplicity and readability. Users can become Pro Members to access unlimited features or donate money via Ko-fi to support the platform's maintenance costs.
lobe-chat-plugins
Lobe Chat Plugins Index is a repository that serves as a collection of various plugins for Function Calling. Users can submit their plugins by following specific instructions. The repository includes a wide range of plugins for different tasks such as image generation, stock analysis, web search, NFT tracking, calendar management, and more. Each plugin is tagged with relevant keywords for easy identification and usage. The repository encourages contributions and provides guidelines for submitting new plugins. It is a valuable resource for developers looking to enhance chatbot functionalities with different plugins.
daily_stock_analysis
The daily_stock_analysis repository is an intelligent stock analysis system based on AI large models for A-share/Hong Kong stock/US stock selection. It automatically analyzes and pushes a 'decision dashboard' to WeChat Work/Feishu/Telegram/email daily. The system features multi-dimensional analysis, global market support, market review, AI backtesting validation, multi-channel notifications, and scheduled execution using GitHub Actions. It utilizes AI models like Gemini, OpenAI, DeepSeek, and data sources like AkShare, Tushare, Pytdx, Baostock, YFinance for analysis. The system includes built-in trading disciplines like risk warning, trend trading, precise entry/exit points, and checklist marking for conditions.
PanWatch
PanWatch is a private AI stock assistant for real-time market monitoring, intelligent technical analysis, and multi-account portfolio management. It offers data privacy through self-hosted deployment, AI-native features that understand user's holdings, style, and goals, and easy setup with Docker. The core functions include intelligent agent system for pre-market analysis, real-time intraday monitoring, end-of-day reports, and news updates. It also provides professional technical analysis with trend indicators, momentum indicators, volume-price analysis, pattern recognition, and support/resistance calculations. PanWatch supports multiple markets and accounts, covering A shares, Hong Kong stocks, and US stocks, with customizable trading styles for accurate AI suggestions. Notifications are available through various channels like Telegram, WeChat Work, DingTalk, Feishu, Bark, and custom webhooks.
tradecat
TradeCat is a comprehensive data analysis and trading platform designed for cryptocurrency, stock, and macroeconomic data. It offers a wide range of features including multi-market data collection, technical indicator modules, AI analysis, signal detection engine, Telegram bot integration, and more. The platform utilizes technologies like Python, TimescaleDB, TA-Lib, Pandas, NumPy, and various APIs to provide users with valuable insights and tools for trading decisions. With a modular architecture and detailed documentation, TradeCat aims to empower users in making informed trading decisions across different markets.
For similar jobs
weave
Weave is a toolkit for developing Generative AI applications, built by Weights & Biases. With Weave, you can log and debug language model inputs, outputs, and traces; build rigorous, apples-to-apples evaluations for language model use cases; and organize all the information generated across the LLM workflow, from experimentation to evaluations to production. Weave aims to bring rigor, best-practices, and composability to the inherently experimental process of developing Generative AI software, without introducing cognitive overhead.
agentcloud
AgentCloud is an open-source platform that enables companies to build and deploy private LLM chat apps, empowering teams to securely interact with their data. It comprises three main components: Agent Backend, Webapp, and Vector Proxy. To run this project locally, clone the repository, install Docker, and start the services. The project is licensed under the GNU Affero General Public License, version 3 only. Contributions and feedback are welcome from the community.
oss-fuzz-gen
This framework generates fuzz targets for real-world `C`/`C++` projects with various Large Language Models (LLM) and benchmarks them via the `OSS-Fuzz` platform. It manages to successfully leverage LLMs to generate valid fuzz targets (which generate non-zero coverage increase) for 160 C/C++ projects. The maximum line coverage increase is 29% from the existing human-written targets.
LLMStack
LLMStack is a no-code platform for building generative AI agents, workflows, and chatbots. It allows users to connect their own data, internal tools, and GPT-powered models without any coding experience. LLMStack can be deployed to the cloud or on-premise and can be accessed via HTTP API or triggered from Slack or Discord.
VisionCraft
The VisionCraft API is a free API for using over 100 different AI models. From images to sound.
kaito
Kaito is an operator that automates the AI/ML inference model deployment in a Kubernetes cluster. It manages large model files using container images, avoids tuning deployment parameters to fit GPU hardware by providing preset configurations, auto-provisions GPU nodes based on model requirements, and hosts large model images in the public Microsoft Container Registry (MCR) if the license allows. Using Kaito, the workflow of onboarding large AI inference models in Kubernetes is largely simplified.
PyRIT
PyRIT is an open access automation framework designed to empower security professionals and ML engineers to red team foundation models and their applications. It automates AI Red Teaming tasks to allow operators to focus on more complicated and time-consuming tasks and can also identify security harms such as misuse (e.g., malware generation, jailbreaking), and privacy harms (e.g., identity theft). The goal is to allow researchers to have a baseline of how well their model and entire inference pipeline is doing against different harm categories and to be able to compare that baseline to future iterations of their model. This allows them to have empirical data on how well their model is doing today, and detect any degradation of performance based on future improvements.
Azure-Analytics-and-AI-Engagement
The Azure-Analytics-and-AI-Engagement repository provides packaged Industry Scenario DREAM Demos with ARM templates (Containing a demo web application, Power BI reports, Synapse resources, AML Notebooks etc.) that can be deployed in a customer’s subscription using the CAPE tool within a matter of few hours. Partners can also deploy DREAM Demos in their own subscriptions using DPoC.



