Best AI tools for< Build Ai Services >
20 - AI tool Sites
Unified DevOps platform to build AI applications
This is a unified DevOps platform to build AI applications. It provides a comprehensive set of tools and services to help developers build, deploy, and manage AI applications. The platform includes a variety of features such as a code editor, a debugger, a profiler, and a deployment manager. It also provides access to a variety of AI services, such as natural language processing, machine learning, and computer vision.
Fetch AI
Fetch AI is an open platform that allows users to build, deploy, and monetize AI applications and services. It provides a new AI economy by connecting multiple integrations to create new services and offers a range of features to transform legacy systems to be AI ready without changing existing APIs. The platform enables users to make their services discoverable on the Fetch.ai Platform with the first open network for AI Agents.
Microsoft Azure
Microsoft Azure is a cloud computing service that offers a wide range of products and services for businesses and developers. It provides global infrastructure, FinOps capabilities, customer stories, and innovation insights. Azure features include virtual machines, AI services, Kubernetes service, Cosmos DB, and more. The platform supports hybrid and multicloud solutions, analytics, application development, and modernization. Azure also offers resources, pricing tools, and partner programs. With a focus on AI and machine learning, Azure enables responsible AI development and secure cloud solutions. The platform caters to IT professionals, developers, data analysts, business leaders, startups, and students, offering a comprehensive suite of tools and services.
ThirdEye Data
ThirdEye Data is a data and AI services & solutions provider that enables enterprises to improve operational efficiencies, increase production accuracies, and make informed business decisions by leveraging the latest Data & AI technologies. They offer services in data engineering, data science, generative AI, computer vision, NLP, and more. ThirdEye Data develops bespoke AI applications using the latest data science technologies to address real-world industry challenges and assists enterprises in leveraging generative AI models to develop custom applications. They also provide AI consulting services to explore potential opportunities for AI implementation. The company has a strong focus on customer success and has received positive reviews and awards for their expertise in AI, ML, and big data solutions.
DataRobot
DataRobot is a leading provider of AI cloud platforms. It offers a range of AI tools and services to help businesses build, deploy, and manage AI models. DataRobot's platform is designed to make AI accessible to businesses of all sizes, regardless of their level of AI expertise. DataRobot's platform includes a variety of features to help businesses build and deploy AI models, including: * A drag-and-drop interface that makes it easy to build AI models, even for users with no coding experience. * A library of pre-built AI models that can be used to solve common business problems. * A set of tools to help businesses monitor and manage their AI models. * A team of AI experts who can provide support and guidance to businesses using the platform.
Codimite
Codimite is an AI-assisted offshore development company that provides a range of services to help businesses accelerate their software development, reduce costs, and drive innovation. Codimite's team of experienced engineers and project managers use AI-powered tools and technologies to deliver exceptional results for their clients. The company's services include AI-assisted software development, cloud modernization, and data and artificial intelligence solutions.
Biz4Group
Biz4Group is a leading software engineering company specializing in AI, IoT, and eCommerce development. With over 20 years of experience and a team of 200+ experts, they have delivered 700+ successful projects for clients worldwide. Their services include AI product development, AI chatbot development, IoT product development, wearable app development, software engineering, mobile application development, full stack development, eCommerce development, web development, CMS solutions, and digital marketing. Biz4Group is committed to helping businesses leverage cutting-edge technologies to improve operations, make data-driven decisions, and unlock new growth opportunities.
NVIDIA
NVIDIA is a world leader in artificial intelligence computing. The company's products and services are used by businesses and governments around the world to develop and deploy AI applications. NVIDIA's AI platform includes hardware, software, and tools that make it easy to build and train AI models. The company also offers a range of cloud-based AI services that make it easy to deploy and manage AI applications. NVIDIA's AI platform is used in a wide variety of industries, including healthcare, manufacturing, retail, and transportation. The company's AI technology is helping to improve the efficiency and accuracy of a wide range of tasks, from medical diagnosis to product design.
TarsyAI
TarsyAI is an AI tool that allows users to build AI assistants without the need for coding. Users can create customized AI assistants to manage customer support, lead generation, sales, and more. The platform offers features such as training with own data, customizing chat widgets, deploying AI assistants, monitoring and improving performance. TarsyAI supports multiple languages, provides advanced AI instructions, lead generation capabilities, and detailed analytics to enhance user interactions. The tool offers various pricing options to cater to different user needs, with a free trial available for all plans.
Macgence AI Training Data Services
Macgence is an AI training data services platform that offers high-quality off-the-shelf structured training data for organizations to build effective AI systems at scale. They provide services such as custom data sourcing, data annotation, data validation, content moderation, and localization. Macgence combines global linguistic, cultural, and technological expertise to create high-quality datasets for AI models, enabling faster time-to-market across the entire model value chain. With more than 5 years of experience, they support and scale AI initiatives of leading global innovators by designing custom data collection programs. Macgence specializes in handling AI training data for text, speech, image, and video data, offering cognitive annotation services to unlock the potential of unstructured textual data.
Google Cloud
Google Cloud is a suite of cloud computing services that runs on the same infrastructure as Google. Its services include computing, storage, networking, databases, machine learning, and more. Google Cloud is designed to make it easy for businesses to develop and deploy applications in the cloud. It offers a variety of tools and services to help businesses with everything from building and deploying applications to managing their infrastructure. Google Cloud is also committed to sustainability, and it has a number of programs in place to reduce its environmental impact.
DEUS
DEUS is a data and artificial intelligence company that empowers organizations to advance value creation by unlocking the true value within their data and applying AI services. They offer services in data science, engineering, design, and strategy, partnering with organizations to benefit people, business, and society. DEUS also focuses on addressing wicked problems and societal challenges through human-centered artificial intelligence initiatives. They help organizations launch AI projects that create real value and partner across the product and service lifecycle.
SingularityNET
SingularityNET is a decentralized AI platform that offers funding opportunities for AI projects. It allows individuals and organizations to develop and monetize their AI services while keeping ownership of their models. The platform aims to build a global ecosystem of decentralized and beneficial AI services through community-driven programs and rewards. SingularityNET provides a space for project proposals, expert reviews, and grants to support the growth of AI projects aligned with the goal of building a Beneficial Artificial General Intelligence.
Wonderplan
Wonderplan is the best AI trip planner and travel planner that helps users dream big and plan easy. It offers personalized travel recommendations, itinerary building, and trip planning services. Users can input their destination, dates, and preferences to receive tailored suggestions for activities and locations. Wonderplan utilizes AI technology to extract information from blogs and videos, curate exceptional travel experiences, and summarize global travel wisdom. The platform provides a user-friendly interface for seamless planning, routing, and visualization of travel plans.
Weaviate
Weaviate is an AI-native database designed to bring intuitive AI-native applications to life with less hallucination, data leakage, and vendor lock-in. It offers features like Hybrid Search, Retrieval-Augmented Generation, Generative Feedback Loops, and Cost-performance optimization. Weaviate empowers developers to build AI-native applications with flexible, reliable, open-source foundations, including a vector database and surrounding services. With over 1M monthly downloads, Weaviate is a core piece of the AI-native stack for developers and enterprises, providing model inference and AI infrastructure tailored to specific use cases.
AI Superior
AI Superior is a German-based AI services company focusing on end-to-end AI-based application development and AI consulting. We design and build web and mobile apps as well as custom software products that rely on complex machine learning and AI models and algorithms. Our Ph.D.-level Data Scientists and Software Engineers are ready to help you create your success story.
Charly AI Solutions
Charly AI Solutions is a leading AI automation company that offers custom chatbots, phone assistants, and other AI solutions to empower businesses. Their AI applications include Humanizer Pro for humanizing AI-generated texts, Recruiter Pro for ranking job compatibility, Cooking Pro for cooking assistance, and Script Pro for generating and analyzing YouTube scripts. The company also provides services to automate tasks using generative artificial intelligence and offers personalized AI solutions for enhanced efficiency and customer relationships.
Azure AI Platform
Azure AI Platform by Microsoft offers a comprehensive suite of artificial intelligence services and tools for developers and businesses. It provides a unified platform for building, training, and deploying AI models, as well as integrating AI capabilities into applications. With a focus on generative AI, multimodal models, and large language models, Azure AI empowers users to create innovative AI-driven solutions across various industries. The platform also emphasizes content safety, scalability, and agility in managing AI projects, making it a valuable resource for organizations looking to leverage AI technologies.
InData Labs
InData Labs is a data science and analytics consulting firm that specializes in delivering AI-powered solutions to companies looking to leverage data and machine learning algorithms for business value. The company offers services such as AI consulting, AI software development, data science services, machine learning consulting, and customer experience consulting. InData Labs helps businesses innovate with AI, enrich customer insights, automate processes, and be more cost-efficient. The company's mission is to bring the power of AI to every business by developing new systems, solutions, and products to help clients stand out from their competition.
Invicta AI
Invicta AI is a provider of artificial intelligence solutions for the enterprise. The company's flagship product is a platform that enables businesses to build and deploy AI models without the need for specialized expertise. Invicta AI's platform provides a range of tools and services to help businesses with every step of the AI development process, from data preparation and model training to deployment and monitoring.
20 - Open Source AI Tools
aws-ai-intelligent-document-processing
This repository is part of Intelligent Document Processing with AWS AI Services workshop. It aims to automate the extraction of information from complex content in various document formats such as insurance claims, mortgages, healthcare claims, contracts, and legal contracts using AWS Machine Learning services like Amazon Textract and Amazon Comprehend. The repository provides hands-on labs to familiarize users with these AI services and build solutions to automate business processes that rely on manual inputs and intervention across different file types and formats.
Build-your-own-AI-Assistant-Solution-Accelerator
Build-your-own-AI-Assistant-Solution-Accelerator is a pre-release and preview solution that helps users create their own AI assistants. It leverages Azure Open AI Service, Azure AI Search, and Microsoft Fabric to identify, summarize, and categorize unstructured information. Users can easily find relevant articles and grants, generate grant applications, and export them as PDF or Word documents. The solution accelerator provides reusable architecture and code snippets for building AI assistants with enterprise data. It is designed for researchers looking to explore flu vaccine studies and grants to accelerate grant proposal submissions.
jina
Jina is a tool that allows users to build multimodal AI services and pipelines using cloud-native technologies. It provides a Pythonic experience for serving ML models and transitioning from local deployment to advanced orchestration frameworks like Docker-Compose, Kubernetes, or Jina AI Cloud. Users can build and serve models for any data type and deep learning framework, design high-performance services with easy scaling, serve LLM models while streaming their output, integrate with Docker containers via Executor Hub, and host on CPU/GPU using Jina AI Cloud. Jina also offers advanced orchestration and scaling capabilities, a smooth transition to the cloud, and easy scalability and concurrency features for applications. Users can deploy to their own cloud or system with Kubernetes and Docker Compose integration, and even deploy to JCloud for autoscaling and monitoring.
ai-hub
The Enterprise Azure OpenAI Hub is a comprehensive repository designed to guide users through the world of Generative AI on the Azure platform. It offers a structured learning experience to accelerate the transition from concept to production in an Enterprise context. The hub empowers users to explore various use cases with Azure services, ensuring security and compliance. It provides real-world examples and playbooks for practical insights into solving complex problems and developing cutting-edge AI solutions. The repository also serves as a library of proven patterns, aligning with industry standards and promoting best practices for secure and compliant AI development.
generative-ai-swift
The Google AI SDK for Swift enables developers to use Google's state-of-the-art generative AI models (like Gemini) to build AI-powered features and applications. This SDK supports use cases like: - Generate text from text-only input - Generate text from text-and-images input (multimodal) - Build multi-turn conversations (chat)
FocusOnAI_24
The .NET Conf Focus on AI 2024 repository contains content from the event focusing on incorporating AI into .NET applications and services. It includes slides and demos showcasing various AI-powered web apps, AI models, generative AI apps, and more. The repository serves as a resource for developers looking to explore AI integration with .NET technologies.
TEN-Agent
TEN Agent is an open-source multimodal agent powered by the world’s first real-time multimodal framework, TEN Framework. It offers high-performance real-time multimodal interactions, multi-language and multi-platform support, edge-cloud integration, flexibility beyond model limitations, and real-time agent state management. Users can easily build complex AI applications through drag-and-drop programming, integrating audio-visual tools, databases, RAG, and more.
eShopSupport
eShopSupport is a sample .NET application showcasing common use cases and development practices for building AI solutions in .NET, specifically Generative AI. It demonstrates a customer support application for an e-commerce website using a services-based architecture with .NET Aspire. The application includes support for text classification, sentiment analysis, text summarization, synthetic data generation, and chat bot interactions. It also showcases development practices such as developing solutions locally, evaluating AI responses, leveraging Python projects, and deploying applications to the Cloud.
comfyui_LLM_party
COMFYUI LLM PARTY is a node library designed for LLM workflow development in ComfyUI, an extremely minimalist UI interface primarily used for AI drawing and SD model-based workflows. The project aims to provide a complete set of nodes for constructing LLM workflows, enabling users to easily integrate them into existing SD workflows. It features various functionalities such as API integration, local large model integration, RAG support, code interpreters, online queries, conditional statements, looping links for large models, persona mask attachment, and tool invocations for weather lookup, time lookup, knowledge base, code execution, web search, and single-page search. Users can rapidly develop web applications using API + Streamlit and utilize LLM as a tool node. Additionally, the project includes an omnipotent interpreter node that allows the large model to perform any task, with recommendations to use the 'show_text' node for display output.
AI-in-a-Box
AI-in-a-Box is a curated collection of solution accelerators that can help engineers establish their AI/ML environments and solutions rapidly and with minimal friction, while maintaining the highest standards of quality and efficiency. It provides essential guidance on the responsible use of AI and LLM technologies, specific security guidance for Generative AI (GenAI) applications, and best practices for scaling OpenAI applications within Azure. The available accelerators include: Azure ML Operationalization in-a-box, Edge AI in-a-box, Doc Intelligence in-a-box, Image and Video Analysis in-a-box, Cognitive Services Landing Zone in-a-box, Semantic Kernel Bot in-a-box, NLP to SQL in-a-box, Assistants API in-a-box, and Assistants API Bot in-a-box.
mslearn-ai-vision
The 'mslearn-ai-vision' repository contains lab files for Azure AI Vision modules. It provides hands-on exercises and resources for learning about AI vision capabilities on the Azure platform. The labs cover topics such as image recognition, object detection, and image classification using Azure's AI services. By following the lab exercises, users can gain practical experience in building and deploying AI vision solutions in the cloud.
Awesome-LLM-RAG-Application
Awesome-LLM-RAG-Application is a repository that provides resources and information about applications based on Large Language Models (LLM) with Retrieval-Augmented Generation (RAG) pattern. It includes a survey paper, GitHub repo, and guides on advanced RAG techniques. The repository covers various aspects of RAG, including academic papers, evaluation benchmarks, downstream tasks, tools, and technologies. It also explores different frameworks, preprocessing tools, routing mechanisms, evaluation frameworks, embeddings, security guardrails, prompting tools, SQL enhancements, LLM deployment, observability tools, and more. The repository aims to offer comprehensive knowledge on RAG for readers interested in exploring and implementing LLM-based systems and products.
gemini-ai
Gemini AI is a Ruby Gem designed to provide low-level access to Google's generative AI services through Vertex AI, Generative Language API, or AI Studio. It allows users to interact with Gemini to build abstractions on top of it. The Gem provides functionalities for tasks such as generating content, embeddings, predictions, and more. It supports streaming capabilities, server-sent events, safety settings, system instructions, JSON format responses, and tools (functions) calling. The Gem also includes error handling, development setup, publishing to RubyGems, updating the README, and references to resources for further learning.
generative-ai-for-beginners
This course has 18 lessons. Each lesson covers its own topic so start wherever you like! Lessons are labeled either "Learn" lessons explaining a Generative AI concept or "Build" lessons that explain a concept and code examples in both **Python** and **TypeScript** when possible. Each lesson also includes a "Keep Learning" section with additional learning tools. **What You Need** * Access to the Azure OpenAI Service **OR** OpenAI API - _Only required to complete coding lessons_ * Basic knowledge of Python or Typescript is helpful - *For absolute beginners check out these Python and TypeScript courses. * A Github account to fork this entire repo to your own GitHub account We have created a **Course Setup** lesson to help you with setting up your development environment. Don't forget to star (🌟) this repo to find it easier later. ## 🧠 Ready to Deploy? If you are looking for more advanced code samples, check out our collection of Generative AI Code Samples in both **Python** and **TypeScript**. ## 🗣️ Meet Other Learners, Get Support Join our official AI Discord server to meet and network with other learners taking this course and get support. ## 🚀 Building a Startup? Sign up for Microsoft for Startups Founders Hub to receive **free OpenAI credits** and up to **$150k towards Azure credits to access OpenAI models through Azure OpenAI Services**. ## 🙏 Want to help? Do you have suggestions or found spelling or code errors? Raise an issue or Create a pull request ## 📂 Each lesson includes: * A short video introduction to the topic * A written lesson located in the README * Python and TypeScript code samples supporting Azure OpenAI and OpenAI API * Links to extra resources to continue your learning ## 🗃️ Lessons | | Lesson Link | Description | Additional Learning | | :-: | :------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------: | ------------------------------------------------------------------------------ | | 00 | Course Setup | **Learn:** How to Setup Your Development Environment | Learn More | | 01 | Introduction to Generative AI and LLMs | **Learn:** Understanding what Generative AI is and how Large Language Models (LLMs) work. | Learn More | | 02 | Exploring and comparing different LLMs | **Learn:** How to select the right model for your use case | Learn More | | 03 | Using Generative AI Responsibly | **Learn:** How to build Generative AI Applications responsibly | Learn More | | 04 | Understanding Prompt Engineering Fundamentals | **Learn:** Hands-on Prompt Engineering Best Practices | Learn More | | 05 | Creating Advanced Prompts | **Learn:** How to apply prompt engineering techniques that improve the outcome of your prompts. | Learn More | | 06 | Building Text Generation Applications | **Build:** A text generation app using Azure OpenAI | Learn More | | 07 | Building Chat Applications | **Build:** Techniques for efficiently building and integrating chat applications. | Learn More | | 08 | Building Search Apps Vector Databases | **Build:** A search application that uses Embeddings to search for data. | Learn More | | 09 | Building Image Generation Applications | **Build:** A image generation application | Learn More | | 10 | Building Low Code AI Applications | **Build:** A Generative AI application using Low Code tools | Learn More | | 11 | Integrating External Applications with Function Calling | **Build:** What is function calling and its use cases for applications | Learn More | | 12 | Designing UX for AI Applications | **Learn:** How to apply UX design principles when developing Generative AI Applications | Learn More | | 13 | Securing Your Generative AI Applications | **Learn:** The threats and risks to AI systems and methods to secure these systems. | Learn More | | 14 | The Generative AI Application Lifecycle | **Learn:** The tools and metrics to manage the LLM Lifecycle and LLMOps | Learn More | | 15 | Retrieval Augmented Generation (RAG) and Vector Databases | **Build:** An application using a RAG Framework to retrieve embeddings from a Vector Databases | Learn More | | 16 | Open Source Models and Hugging Face | **Build:** An application using open source models available on Hugging Face | Learn More | | 17 | AI Agents | **Build:** An application using an AI Agent Framework | Learn More | | 18 | Fine-Tuning LLMs | **Learn:** The what, why and how of fine-tuning LLMs | Learn More |
GenAI_Agents
GenAI Agents is a comprehensive repository for developing and implementing Generative AI (GenAI) agents, ranging from simple conversational bots to complex multi-agent systems. It serves as a valuable resource for learning, building, and sharing GenAI agents, offering tutorials, implementations, and a platform for showcasing innovative agent creations. The repository covers a wide range of agent architectures and applications, providing step-by-step tutorials, ready-to-use implementations, and regular updates on advancements in GenAI technology.
multi-agent-orchestrator
Multi-Agent Orchestrator is a flexible and powerful framework for managing multiple AI agents and handling complex conversations. It intelligently routes queries to the most suitable agent based on context and content, supports dual language implementation in Python and TypeScript, offers flexible agent responses, context management across agents, extensible architecture for customization, universal deployment options, and pre-built agents and classifiers. It is suitable for various applications, from simple chatbots to sophisticated AI systems, accommodating diverse requirements and scaling efficiently.
generative-ai-amazon-bedrock-langchain-agent-example
This repository provides a sample solution for building generative AI agents using Amazon Bedrock, Amazon DynamoDB, Amazon Kendra, Amazon Lex, and LangChain. The solution creates a generative AI financial services agent capable of assisting users with account information, loan applications, and answering natural language questions. It serves as a launchpad for developers to create personalized conversational agents for applications like chatbots and virtual assistants.
learn-generative-ai
Learn Cloud Applied Generative AI Engineering (GenEng) is a course focusing on the application of generative AI technologies in various industries. The course covers topics such as the economic impact of generative AI, the role of developers in adopting and integrating generative AI technologies, and the future trends in generative AI. Students will learn about tools like OpenAI API, LangChain, and Pinecone, and how to build and deploy Large Language Models (LLMs) for different applications. The course also explores the convergence of generative AI with Web 3.0 and its potential implications for decentralized intelligence.
20 - OpenAI Gpts
Account Executive
Maintains and expands client portfolio through strategic upselling, relationship-building, and negotiation.
Bot Advisor
Expert in bot-building platforms and AI solutions for tailored industry proposals.
AI Body Language Interpreter
Interprets body language in diverse daily situations with contextual insights.
AI Negotiator
30+ years of proven negotiation and mediation approaches and solutions! (DO NOT SHARE PRIVATE INFORMATION)
AI Complexity Advancement Blueprint
Expert AI Architect for Advancing Complexities in AI Understanding
ecosystem.Ai Use Case Designer v2
The use case designer is configured with the latest Data Science and Behavioral Social Science insights to guide you through the process of defining AI and Machine Learning use cases for the ecosystem.Ai platform.
AI Course Architect
A detailed AI course builder, providing in-depth AI educational content.