Best AI tools for< Predict Quantiles >
20 - AI tool Sites
Inventoro
Inventoro is a smart inventory forecasting and replenishment tool that helps businesses optimize their inventory management processes. By analyzing past sales data, the tool predicts future sales, recommends order quantities, reduces inventory size, identifies profitable inventory items, and ensures customer satisfaction by avoiding stockouts. Inventoro offers features such as sales forecasting, product segmentation, replenishment, system integration, and forecast automations. The tool is designed to help businesses decrease inventory, increase revenue, save time, and improve product availability. It is suitable for businesses of all sizes and industries looking to streamline their inventory management operations.
Predict API
The Predict API is a powerful tool that allows you to forecast your data with simplicity and accuracy. It uses the latest advancements in stochastic modeling and machine learning to provide you with reliable projections. The API is easy to use and can be integrated with any application. It is also highly scalable, so you can use it to forecast large datasets. With the Predict API, you can gain valuable insights into your data and make better decisions.
AI Baby Generator
AI Baby Generator is an AI application that predicts the face of your future child by generating ultra-realistic baby photos based on your photos and features. It offers customized baby photos, personality descriptions, and various packages to meet your needs. The application uses advanced AI technology to provide accurate results and ensures data privacy for its users.
Numerai
Numerai is a data science tournament platform where users can compete to build models that predict the stock market. The platform provides users with clean and regularized hedge fund quality data, and users can build models using Python or R scripts. Numerai also has a cryptocurrency, NMR, which users can stake on their models to earn rewards.
Neurons
Neurons is a platform that uses AI to predict consumer responses and behavior. It offers a variety of solutions for businesses, including marketing agencies, designers, and e-commerce companies. Neurons' AI-powered tools can help businesses optimize their marketing campaigns, improve their product design, and better understand their customers.
BforeAI
BforeAI is an AI-powered platform that specializes in fighting cyberthreats with intelligence. The platform offers predictive security solutions to prevent phishing, spoofing, impersonation, hijacking, ransomware, online fraud, and data exfiltration. BforeAI uses cutting-edge AI technology for behavioral analysis and predictive results, going beyond reactive blocklists to predict and prevent attacks before they occur. The platform caters to various industries such as financial, manufacturing, retail, and media & entertainment, providing tailored solutions to address unique security challenges.
Heatseeker
Heatseeker is an AI-powered market experimentation tool that helps businesses predict customer preferences, conduct feature tests, and generate value propositions. It enables users to answer critical growth questions about market, audience, and product features through AI-powered experiments. Heatseeker provides insights into market trends, competitor analysis, and helps in making data-driven decisions. The platform offers curated recommendations, competitive intelligence, and continuous testing for refining strategies. It automates ad campaign generation, data collection, and provides recommendations for launching new products. Heatseeker is designed to help businesses optimize their marketing efforts and improve their product offerings.
ClosedLoop
ClosedLoop is a healthcare data science platform that helps organizations improve outcomes and reduce costs by providing accurate, explainable, and actionable predictions of individual-level health risks. The platform offers predictive analytics for various healthcare sectors, data science automation, and a healthcare content library to accelerate time to value. ClosedLoop's AI/ML platform is designed exclusively for the data science needs of modern healthcare organizations, enabling proactive interventions, improved clinical outcomes, and innovative healthcare offerings.
AutoPredict
AutoPredict is an AI application that predicts how long a car will last by analyzing over 100 million data points. It offers accurate estimates of a car's life span, providing users with valuable insights into their vehicle's longevity. In addition to the prediction feature, AutoPredict also offers an API for businesses to integrate the predictions and statistics into their operations. The AutoPredict Blog shares insights and statistics discovered during the development of the AI model.
MonkeeMath
MonkeeMath is an AI tool designed to scrape comments from Reddit and Stocktwits that mention stock tickers. It utilizes ChatGPT to analyze the sentiment of these comments, determining whether they are bullish or bearish on the outlook of the ticker. The data collected is then used to generate charts and tables displayed on the website. Users can create an account to view predictions and participate in a prediction mini-game to earn a spot on the MonkeeMath user leaderboard.
Lotto Chart
Lotto Chart is a highly accurate AI-powered chart for predicting lottery numbers. It harnesses the power of artificial intelligence, statistical analysis, and probability to generate winning combinations for various lotteries. The application processes billions of data points, utilizes 7 powerful prediction models, and provides advanced data-driven predictions to help users increase their chances of winning. Lotto Chart also offers support for seeded predictions, daily updated insights and reports, and tools to easily identify patterns and trends in lottery numbers.
Simpleem
Simpleem is an Artificial Emotional Intelligence (AEI) tool that helps users uncover intentions, predict success, and leverage behavior for successful interactions. By measuring all interactions and correlating them with concrete outcomes, Simpleem provides insights into verbal, para-verbal, and non-verbal cues to enhance customer relationships, track customer rapport, and assess team performance. The tool aims to identify win/lose patterns in behavior, guide users on boosting performance, and prevent burnout by promptly identifying red flags. Simpleem uses proprietary AI models to analyze real-world data and translate behavioral insights into concrete business metrics, achieving a high accuracy rate of 94% in success prediction.
Onoco
Onoco is the first super-app for parents that aims to track, predict, and share care for babies. It provides a smart, simple, safe, and easy-to-share platform where parents can monitor their baby's development milestones, daily routines, and growth progress. Onoco empowers parents with expert knowledge on essential topics such as baby sleep, nutrition, and postpartum health, bridging the gap between scientific research and everyday parenting. The app allows users to create personalized routines, monitor developmental milestones from birth to 5 years, share updates with caregivers, and receive brain-building tips tailored to the child's age and learning areas.
nventr
nventr is an AI platform for predictive automation, offering a suite of products and services powered by predictive analytics. The company focuses on applying new approaches to uncover patterns, extract valuable intelligence, and predict outcomes within vast datasets. nventr solutions support enterprise-grade AI acceleration, intelligent data processing, and digital transformation. The platform, nventr.ai, enables rapid building of AI models and software applications through collaborative tools and cloud-based infrastructure.
Tomorrow.io
Tomorrow.io is a Weather Intelligence & Resilience Platform that provides hyper-accurate weather data and insights for organizations and consumers. It offers a range of products and solutions for various industries, leveraging proprietary space data and AI/ML technology to help users predict, make informed decisions, and address weather-related challenges. The platform enables proactive measures to protect infrastructure, optimize operations, and enhance safety in the face of extreme weather events.
CreatorML
CreatorML is an AI-powered platform designed to help YouTube creators optimize their content and grow their channels. Using machine learning, CreatorML's tools can predict how well a video will perform before it's even published, suggest title and thumbnail ideas, and provide insights into what's trending on YouTube. CreatorML is designed for YouTube creators of all levels, from beginners to experienced professionals. It offers a variety of subscription plans to fit every budget and need.
Keepme
Keepme is an AI-powered platform designed for gyms to boost sales, predict and prevent attrition, and enhance member retention. It offers features such as Keepme Score™ for predicting attrition, smart lead scoring, gym tours & trials scheduler, NPS surveys, smart campaigns & automations, smart content production, and WhatsApp integration. The platform provides personalized training and world-class support through Keepme Academy and customer success team. Keepme is trusted by over 450 fitness clubs globally and offers valuable AI resources to empower users with knowledge.
COPA
The website is an AI sports betting prediction platform called COPA. It offers high-quality sports predictions using Artificial Intelligence (AI) for various football events. Users can access match predictions, statistics, and betting insights for top global leagues. The platform aims to provide informed betting choices and predictive tools for European football leagues, with plans to expand to other sports in the future. COPA is designed to empower sports fans with accurate forecasts at an affordable cost.
CaseYak
CaseYak is an AI tool that utilizes artificial intelligence to predict the value of personal injury claims. It offers a lead generation solution for law firms by providing case value predictions based on historical data and using large language models to create an empathetic agent to engage with potential clients. The tool aims to help law firms convert website visitors into signed clients by offering data-driven appraisals of their cases.
Focia
Focia is an AI-powered engagement optimization tool that helps users predict, analyze, and enhance their content performance across various digital platforms. It offers features such as ranking and comparing content ideas, content analysis, feedback generation, engagement predictions, workspace customization, and real-time model training. Focia's AI models, including Blaze, Neon, Phantom, and Omni, specialize in analyzing different types of content on platforms like YouTube, Instagram, TikTok, and e-commerce sites. By leveraging Focia, users can boost their engagement, conduct A/B testing, measure performance, and conceptualize content ideas effectively.
20 - Open Source AI Tools
skpro
skpro is a library for supervised probabilistic prediction in python. It provides `scikit-learn`-like, `scikit-base` compatible interfaces to: * tabular **supervised regressors for probabilistic prediction** \- interval, quantile and distribution predictions * tabular **probabilistic time-to-event and survival prediction** \- instance-individual survival distributions * **metrics to evaluate probabilistic predictions** , e.g., pinball loss, empirical coverage, CRPS, survival losses * **reductions** to turn `scikit-learn` regressors into probabilistic `skpro` regressors, such as bootstrap or conformal * building **pipelines and composite models** , including tuning via probabilistic performance metrics * symbolic **probability distributions** with value domain of `pandas.DataFrame`-s and `pandas`-like interface
chronos-forecasting
Chronos is a family of pretrained time series forecasting models based on language model architectures. A time series is transformed into a sequence of tokens via scaling and quantization, and a language model is trained on these tokens using the cross-entropy loss. Once trained, probabilistic forecasts are obtained by sampling multiple future trajectories given the historical context. Chronos models have been trained on a large corpus of publicly available time series data, as well as synthetic data generated using Gaussian processes.
pytorch-forecasting
PyTorch Forecasting is a PyTorch-based package for time series forecasting with state-of-the-art network architectures. It offers a high-level API for training networks on pandas data frames and utilizes PyTorch Lightning for scalable training on GPUs and CPUs. The package aims to simplify time series forecasting with neural networks by providing a flexible API for professionals and default settings for beginners. It includes a timeseries dataset class, base model class, multiple neural network architectures, multi-horizon timeseries metrics, and hyperparameter tuning with optuna. PyTorch Forecasting is built on pytorch-lightning for easy training on various hardware configurations.
pytorch-forecasting
PyTorch Forecasting is a PyTorch-based package designed for state-of-the-art timeseries forecasting using deep learning architectures. It offers a high-level API and leverages PyTorch Lightning for efficient training on GPU or CPU with automatic logging. The package aims to simplify timeseries forecasting tasks by providing a flexible API for professionals and user-friendly defaults for beginners. It includes features such as a timeseries dataset class for handling data transformations, missing values, and subsampling, various neural network architectures optimized for real-world deployment, multi-horizon timeseries metrics, and hyperparameter tuning with optuna. Built on pytorch-lightning, it supports training on CPUs, single GPUs, and multiple GPUs out-of-the-box.
LLM-PowerHouse-A-Curated-Guide-for-Large-Language-Models-with-Custom-Training-and-Inferencing
LLM-PowerHouse is a comprehensive and curated guide designed to empower developers, researchers, and enthusiasts to harness the true capabilities of Large Language Models (LLMs) and build intelligent applications that push the boundaries of natural language understanding. This GitHub repository provides in-depth articles, codebase mastery, LLM PlayLab, and resources for cost analysis and network visualization. It covers various aspects of LLMs, including NLP, models, training, evaluation metrics, open LLMs, and more. The repository also includes a collection of code examples and tutorials to help users build and deploy LLM-based applications.
upgini
Upgini is an intelligent data search engine with a Python library that helps users find and add relevant features to their ML pipeline from various public, community, and premium external data sources. It automates the optimization of connected data sources by generating an optimal set of machine learning features using large language models, GraphNNs, and recurrent neural networks. The tool aims to simplify feature search and enrichment for external data to make it a standard approach in machine learning pipelines. It democratizes access to data sources for the data science community.
driverlessai-recipes
This repository contains custom recipes for H2O Driverless AI, which is an Automatic Machine Learning platform for the Enterprise. Custom recipes are Python code snippets that can be uploaded into Driverless AI at runtime to automate feature engineering, model building, visualization, and interpretability. Users can gain control over the optimization choices made by Driverless AI by providing their own custom recipes. The repository includes recipes for various tasks such as data manipulation, data preprocessing, feature selection, data augmentation, model building, scoring, and more. Best practices for creating and using recipes are also provided, including security considerations, performance tips, and safety measures.
booster
Booster is a powerful inference accelerator designed for scaling large language models within production environments or for experimental purposes. It is built with performance and scaling in mind, supporting various CPUs and GPUs, including Nvidia CUDA, Apple Metal, and OpenCL cards. The tool can split large models across multiple GPUs, offering fast inference on machines with beefy GPUs. It supports both regular FP16/FP32 models and quantised versions, along with popular LLM architectures. Additionally, Booster features proprietary Janus Sampling for code generation and non-English languages.
intel-extension-for-transformers
Intel® Extension for Transformers is an innovative toolkit designed to accelerate GenAI/LLM everywhere with the optimal performance of Transformer-based models on various Intel platforms, including Intel Gaudi2, Intel CPU, and Intel GPU. The toolkit provides the below key features and examples: * Seamless user experience of model compressions on Transformer-based models by extending [Hugging Face transformers](https://github.com/huggingface/transformers) APIs and leveraging [Intel® Neural Compressor](https://github.com/intel/neural-compressor) * Advanced software optimizations and unique compression-aware runtime (released with NeurIPS 2022's paper [Fast Distilbert on CPUs](https://arxiv.org/abs/2211.07715) and [QuaLA-MiniLM: a Quantized Length Adaptive MiniLM](https://arxiv.org/abs/2210.17114), and NeurIPS 2021's paper [Prune Once for All: Sparse Pre-Trained Language Models](https://arxiv.org/abs/2111.05754)) * Optimized Transformer-based model packages such as [Stable Diffusion](examples/huggingface/pytorch/text-to-image/deployment/stable_diffusion), [GPT-J-6B](examples/huggingface/pytorch/text-generation/deployment), [GPT-NEOX](examples/huggingface/pytorch/language-modeling/quantization#2-validated-model-list), [BLOOM-176B](examples/huggingface/pytorch/language-modeling/inference#BLOOM-176B), [T5](examples/huggingface/pytorch/summarization/quantization#2-validated-model-list), [Flan-T5](examples/huggingface/pytorch/summarization/quantization#2-validated-model-list), and end-to-end workflows such as [SetFit-based text classification](docs/tutorials/pytorch/text-classification/SetFit_model_compression_AGNews.ipynb) and [document level sentiment analysis (DLSA)](workflows/dlsa) * [NeuralChat](intel_extension_for_transformers/neural_chat), a customizable chatbot framework to create your own chatbot within minutes by leveraging a rich set of [plugins](https://github.com/intel/intel-extension-for-transformers/blob/main/intel_extension_for_transformers/neural_chat/docs/advanced_features.md) such as [Knowledge Retrieval](./intel_extension_for_transformers/neural_chat/pipeline/plugins/retrieval/README.md), [Speech Interaction](./intel_extension_for_transformers/neural_chat/pipeline/plugins/audio/README.md), [Query Caching](./intel_extension_for_transformers/neural_chat/pipeline/plugins/caching/README.md), and [Security Guardrail](./intel_extension_for_transformers/neural_chat/pipeline/plugins/security/README.md). This framework supports Intel Gaudi2/CPU/GPU. * [Inference](https://github.com/intel/neural-speed/tree/main) of Large Language Model (LLM) in pure C/C++ with weight-only quantization kernels for Intel CPU and Intel GPU (TBD), supporting [GPT-NEOX](https://github.com/intel/neural-speed/tree/main/neural_speed/models/gptneox), [LLAMA](https://github.com/intel/neural-speed/tree/main/neural_speed/models/llama), [MPT](https://github.com/intel/neural-speed/tree/main/neural_speed/models/mpt), [FALCON](https://github.com/intel/neural-speed/tree/main/neural_speed/models/falcon), [BLOOM-7B](https://github.com/intel/neural-speed/tree/main/neural_speed/models/bloom), [OPT](https://github.com/intel/neural-speed/tree/main/neural_speed/models/opt), [ChatGLM2-6B](https://github.com/intel/neural-speed/tree/main/neural_speed/models/chatglm), [GPT-J-6B](https://github.com/intel/neural-speed/tree/main/neural_speed/models/gptj), and [Dolly-v2-3B](https://github.com/intel/neural-speed/tree/main/neural_speed/models/gptneox). Support AMX, VNNI, AVX512F and AVX2 instruction set. We've boosted the performance of Intel CPUs, with a particular focus on the 4th generation Intel Xeon Scalable processor, codenamed [Sapphire Rapids](https://www.intel.com/content/www/us/en/products/docs/processors/xeon-accelerated/4th-gen-xeon-scalable-processors.html).
llm4regression
This project explores the capability of Large Language Models (LLMs) to perform regression tasks using in-context examples. It compares the performance of LLMs like GPT-4 and Claude 3 Opus with traditional supervised methods such as Linear Regression and Gradient Boosting. The project provides preprints and results demonstrating the strong performance of LLMs in regression tasks. It includes datasets, models used, and experiments on adaptation and contamination. The code and data for the experiments are available for interaction and analysis.
DB-GPT-Hub
DB-GPT-Hub is an experimental project leveraging Large Language Models (LLMs) for Text-to-SQL parsing. It includes stages like data collection, preprocessing, model selection, construction, and fine-tuning of model weights. The project aims to enhance Text-to-SQL capabilities, reduce model training costs, and enable developers to contribute to improving Text-to-SQL accuracy. The ultimate goal is to achieve automated question-answering based on databases, allowing users to execute complex database queries using natural language descriptions. The project has successfully integrated multiple large models and established a comprehensive workflow for data processing, SFT model training, prediction output, and evaluation.
litgpt
LitGPT is a command-line tool designed to easily finetune, pretrain, evaluate, and deploy 20+ LLMs **on your own data**. It features highly-optimized training recipes for the world's most powerful open-source large-language-models (LLMs).
llama.rn
React Native binding of llama.cpp, which is an inference of LLaMA model in pure C/C++. This tool allows you to use the LLaMA model in your React Native applications for various tasks such as text completion, tokenization, detokenization, and embedding. It provides a convenient interface to interact with the LLaMA model and supports features like grammar sampling and mocking for testing purposes.
bark.cpp
Bark.cpp is a C/C++ implementation of the Bark model, a real-time, multilingual text-to-speech generation model. It supports AVX, AVX2, and AVX512 for x86 architectures, and is compatible with both CPU and GPU backends. Bark.cpp also supports mixed F16/F32 precision and 4-bit, 5-bit, and 8-bit integer quantization. It can be used to generate realistic-sounding audio from text prompts.
llm-reasoners
LLM Reasoners is a library that enables LLMs to conduct complex reasoning, with advanced reasoning algorithms. It approaches multi-step reasoning as planning and searches for the optimal reasoning chain, which achieves the best balance of exploration vs exploitation with the idea of "World Model" and "Reward". Given any reasoning problem, simply define the reward function and an optional world model (explained below), and let LLM reasoners take care of the rest, including Reasoning Algorithms, Visualization, LLM calling, and more!
chatglm.cpp
ChatGLM.cpp is a C++ implementation of ChatGLM-6B, ChatGLM2-6B, ChatGLM3-6B and more LLMs for real-time chatting on your MacBook. It is based on ggml, working in the same way as llama.cpp. ChatGLM.cpp features accelerated memory-efficient CPU inference with int4/int8 quantization, optimized KV cache and parallel computing. It also supports P-Tuning v2 and LoRA finetuned models, streaming generation with typewriter effect, Python binding, web demo, api servers and more possibilities.
Awesome-LLM-Large-Language-Models-Notes
Awesome-LLM-Large-Language-Models-Notes is a repository that provides a comprehensive collection of information on various Large Language Models (LLMs) classified by year, size, and name. It includes details on known LLM models, their papers, implementations, and specific characteristics. The repository also covers LLM models classified by architecture, must-read papers, blog articles, tutorials, and implementations from scratch. It serves as a valuable resource for individuals interested in understanding and working with LLMs in the field of Natural Language Processing (NLP).
premsql
PremSQL is an open-source library designed to help developers create secure, fully local Text-to-SQL solutions using small language models. It provides essential tools for building and deploying end-to-end Text-to-SQL pipelines with customizable components, ideal for secure, autonomous AI-powered data analysis. The library offers features like Local-First approach, Customizable Datasets, Robust Executors and Evaluators, Advanced Generators, Error Handling and Self-Correction, Fine-Tuning Support, and End-to-End Pipelines. Users can fine-tune models, generate SQL queries from natural language inputs, handle errors, and evaluate model performance against predefined metrics. PremSQL is extendible for customization and private data usage.
20 - OpenAI Gpts
JamesGPT
Predict the future, opine on politics and controversial topics, and have GPT assess what is "true"
Finance Wizard
I predict future stock market prices. AI analyst. Your trading analysis assistant. Press H to bring up prompt hot key menu. Not financial advice.
Financial Statement Analyzer
Analyze Financial Statements step by step to Predict Earnings Direction
Moot Master
A moot competition companion. & Trial Prep companion . Test and improve arguments- predict your opponent's reaction.
College entrance exam prediction app
Our college entrance exam prediction app uses advanced algorithms and data analysis to provide accurate predictions for students preparing to take their college entrance exams.
Prévisions Cryptos
Prédictif des tendances crypto à partir de la presse et des réseaux sociaux