Best AI tools for< Data Preparation >
20 - AI tool Sites
Compact Data Science
Compact Data Science is a data science platform that provides a comprehensive set of tools and resources for data scientists and analysts. The platform includes a variety of features such as data preparation, data visualization, machine learning, and predictive analytics. Compact Data Science is designed to be easy to use and accessible to users of all skill levels.
Arcwise
Arcwise is a cloud-based data science platform that provides a comprehensive set of tools for data preparation, exploration, modeling, and deployment. It is designed to make data science accessible to users of all skill levels, from beginners to experts. Arcwise offers a user-friendly interface, drag-and-drop functionality, and a wide range of pre-built templates and algorithms. This makes it easy for users to get started with data science and quickly build and deploy machine learning models.
Cognee
Cognee is an AI application that helps users build deterministic AI memory by perfecting exceptional AI apps with intelligent data management. It acts as a semantic memory layer, uncovering hidden connections within data and infusing it with company-specific language and principles. Cognee offers data ingestion and enrichment services, resulting in relevant data retrievals and lower infrastructure costs. The application is suitable for various industries, including customer engagement, EduTech, company onboarding, recruitment, marketing, and tourism.
Akkio
Akkio is an AI data platform designed specifically for agencies and their clients. It offers a range of features to help agencies improve performance, including data preparation, predictive analytics, and reporting. Akkio is easy to use, with a drag-and-drop interface and no coding required. It also integrates with a variety of data sources, making it easy to get started.
OWOX BI
OWOX BI is a leading data democratization platform that empowers businesses by automating business reporting in Google Sheets, simplifying data preparation with SQL and No SQL, and providing AI-powered solutions for marketing analytics. The platform offers features such as AI Copilot for faster SQL queries, Cookieless Analytics Tracking, Dashboard Templates, and integrations with Google Analytics, Google Sheets, BigQuery, and various ad platforms. OWOX BI enables users to centralize and automate marketing and sales data, visualize data with templates, and measure marketing performance effectively. The platform fosters collaboration between data teams and business users, ensuring data accuracy, reliability, and ownership.
Tellius
Tellius is an AI Augmented Analytics Software and Decision Intelligence platform that empowers users to get faster insights from data, break silos between Business Intelligence (BI) and AI, and accelerate complex data analysis with AI-driven automation. The platform offers guided insights, data preparation, natural language search, automated machine learning, and self-service analytics & reporting. Tellius is loved by analytics and business teams for providing instant ad hoc answers, simplifying complex analysis, and surfacing hidden key drivers and anomalies through best-in-class automated insights.
Dflux
Dflux is a cloud-based Unified Data Science Platform that offers end-to-end data engineering and intelligence with a no-code ML approach. It enables users to integrate data, perform data engineering, create customized models, analyze interactive dashboards, and make data-driven decisions for customer retention and business growth. Dflux bridges the gap between data strategy and data science, providing powerful SQL editor, intuitive dashboards, AI-powered text to SQL query builder, and AutoML capabilities. It accelerates insights with data science, enhances operational agility, and ensures a well-defined, automated data science life cycle. The platform caters to Data Engineers, Data Scientists, Data Analysts, and Decision Makers, offering all-round data preparation, AutoML models, and built-in data visualizations. Dflux is a secure, reliable, and comprehensive data platform that automates analytics, machine learning, and data processes, making data to insights easy and accessible for enterprises.
Dataiku
Dataiku is an end-to-end platform for data and AI projects. It provides a range of capabilities, including data preparation, machine learning, data visualization, and collaboration tools. Dataiku is designed to make it easy for users to build, deploy, and manage AI projects at scale.
Alteryx
Alteryx offers a leading AI Platform for Enterprise Analytics that delivers actionable insights by automating analytics. The platform combines the power of data preparation, analytics, and machine learning to help businesses make better decisions faster. With Alteryx, businesses can connect to a wide variety of data sources, prepare and clean data, perform advanced analytics, and build and deploy machine learning models. The platform is designed to be easy to use, even for non-technical users, and it can be deployed on-premises or in the cloud.
IngestAI
IngestAI is a Silicon Valley-based startup that provides a sophisticated toolbox for data preparation and model selection, powered by proprietary AI algorithms. The company's mission is to make AI accessible and affordable for businesses of all sizes. IngestAI's platform offers a turn-key service tailored for AI builders seeking to optimize AI application development. The company identifies the model best-suited for a customer's needs, ensuring it is designed for high performance and reliability. IngestAI utilizes Deepmark AI, its proprietary software solution, to minimize the time required to identify and deploy the most effective AI solutions. IngestAI also provides data preparation services, transforming raw structured and unstructured data into high-quality, AI-ready formats. This service is meticulously designed to ensure that AI models receive the best possible input, leading to unparalleled performance and accuracy. IngestAI goes beyond mere implementation; the company excels in fine-tuning AI models to ensure that they match the unique nuances of a customer's data and specific demands of their industry. IngestAI rigorously evaluates each AI project, not only ensuring its successful launch but its optimal alignment with a customer's business goals.
Pecan AI
Pecan AI is a predictive analytics software product designed for business and data analysts. It offers blazing-fast predictions, seamless integrations, and requires no machine learning experience. Pecan empowers teams to succeed with impactful AI models, automates data preparation, and features a Predictive Chat, Predictive Notebook, and guided or DIY predictive modeling tools. The platform helps users build trustworthy predictive models, optimize campaigns, and make data-driven decisions to drive business growth.
Clarifai
Clarifai is a full-stack AI platform that provides developers and ML engineers with the fastest, production-grade deep learning platform. It offers a wide range of features, including data preparation, model building, model operationalization, and AI workflows. Clarifai is used by a variety of companies, including Fortune 500 companies and startups, to build AI applications in a variety of industries, including retail, manufacturing, and healthcare.
Clarifai
Clarifai is a full-stack AI developer platform that provides a range of tools and services for building and deploying AI applications. The platform includes a variety of computer vision, natural language processing, and generative AI models, as well as tools for data preparation, model training, and model deployment. Clarifai is used by a variety of businesses and organizations, including Fortune 500 companies, startups, and government agencies.
madebymachines
madebymachines is an AI tool designed to assist users in various stages of the machine learning workflow, from data preparation to model development. The tool offers services such as data collection, data labeling, model training, hyperparameter tuning, and transfer learning. With a user-friendly interface and efficient algorithms, madebymachines aims to streamline the process of building machine learning models for both beginners and experienced users.
Mixpeek
Mixpeek is a multimodal intelligence platform that helps users extract important data from videos, images, audio, and documents. It enables users to focus on insights rather than data preparation by identifying concepts, activities, and objects from various sources. Mixpeek offers features such as real-time synchronization, extraction and embedding, fine-tuning and scaling of models, and seamless integration with various data sources. The platform is designed to be easy to use, scalable, and secure, making it suitable for a wide range of applications.
Baseten
Baseten is a machine learning infrastructure that provides a unified platform for data scientists and engineers to build, train, and deploy machine learning models. It offers a range of features to simplify the ML lifecycle, including data preparation, model training, and deployment. Baseten also provides a marketplace of pre-built models and components that can be used to accelerate the development of ML applications.
Invicta AI
Invicta AI is a provider of artificial intelligence solutions for the enterprise. The company's flagship product is a platform that enables businesses to build and deploy AI models without the need for specialized expertise. Invicta AI's platform provides a range of tools and services to help businesses with every step of the AI development process, from data preparation and model training to deployment and monitoring.
SheetMagic
SheetMagic is an AI-powered tool that allows users to perform various tasks within Google Sheets, including generating AI content, web scraping, data analysis, and data preparation. It integrates with ChatGPT, allowing users to access advanced AI capabilities without coding or hiring developers. SheetMagic is designed to enhance productivity and streamline workflows for individuals and teams.
Trifacta API Documentation
Trifacta API Documentation provides reference information on all of the available endpoints for each product edition. This website does not factor disabled features or your specific account permissions. To review API documentation for the endpoints to which your account has access, please select Help menu > API Documentation from the Trifacta application menu.
KPMG
KPMG is an AI tool that helps clients harness the power and potential of AI, from strategy to implementation. With over 150 years of industry insights, KPMG assists in identifying AI opportunities, developing business cases, optimizing value streams, and providing workforce education and training. The tool supports the development, deployment, and management of AI systems, offering services such as data collection, use case development, and technical integration. KPMG also focuses on organizational change management, workforce shaping, and building sector-specific AI solutions to transform enterprises. Additionally, KPMG ensures ethical and compliant AI initiatives through its Trusted AI framework, empowering and augmenting human capabilities while enhancing the employee experience. The tool has been instrumental in helping clients across various sectors expedite customer responses, transform procurement processes, and manage policy effectively with AI.
20 - Open Source AI Tools
data-prep-kit
Data Prep Kit is a community project aimed at democratizing and speeding up unstructured data preparation for LLM app developers. It provides high-level APIs and modules for transforming data (code, language, speech, visual) to optimize LLM performance across different use cases. The toolkit supports Python, Ray, Spark, and Kubeflow Pipelines runtimes, offering scalability from laptop to datacenter-scale processing. Developers can contribute new custom modules and leverage the data processing library for building data pipelines. Automation features include workflow automation with Kubeflow Pipelines for transform execution.
amber-data-prep
This repository contains the code to prepare the data for the Amber 7B language model. The final training data comes from three sources: RedPajama V1, RefinedWeb, and StarCoderData. The data preparation involves downloading untokenized data, tokenizing the data using the Huggingface tokenizer, concatenating tokens into 2048 token sequences, merging datasets, and splitting the merged dataset into 360 chunks. Each tokenized data chunk is a jsonl file containing samples with 2049 tokens. The repository provides scripts for downloading datasets, tokenizing and concatenating sequences, validating data, and merging subsets into chunks.
unitxt
Unitxt is a customizable library for textual data preparation and evaluation tailored to generative language models. It natively integrates with common libraries like HuggingFace and LM-eval-harness and deconstructs processing flows into modular components, enabling easy customization and sharing between practitioners. These components encompass model-specific formats, task prompts, and many other comprehensive dataset processing definitions. The Unitxt-Catalog centralizes these components, fostering collaboration and exploration in modern textual data workflows. Beyond being a tool, Unitxt is a community-driven platform, empowering users to build, share, and advance their pipelines collaboratively.
lhotse
Lhotse is a Python library designed to make speech and audio data preparation flexible and accessible. It aims to attract a wider community to speech processing tasks by providing a Python-centric design and an expressive command-line interface. Lhotse offers standard data preparation recipes, PyTorch Dataset classes for speech tasks, and efficient data preparation for model training with audio cuts. It supports data augmentation, feature extraction, and feature-space cut mixing. The tool extends Kaldi's data preparation recipes with seamless PyTorch integration, human-readable text manifests, and convenient Python classes.
sycamore
Sycamore is a conversational search and analytics platform for complex unstructured data, such as documents, presentations, transcripts, embedded tables, and internal knowledge repositories. It retrieves and synthesizes high-quality answers through bringing AI to data preparation, indexing, and retrieval. Sycamore makes it easy to prepare unstructured data for search and analytics, providing a toolkit for data cleaning, information extraction, enrichment, summarization, and generation of vector embeddings that encapsulate the semantics of data. Sycamore uses your choice of generative AI models to make these operations simple and effective, and it enables quick experimentation and iteration. Additionally, Sycamore uses OpenSearch for indexing, enabling hybrid (vector + keyword) search, retrieval-augmented generation (RAG) pipelining, filtering, analytical functions, conversational memory, and other features to improve information retrieval.
Groma
Groma is a grounded multimodal assistant that excels in region understanding and visual grounding. It can process user-defined region inputs and generate contextually grounded long-form responses. The tool presents a unique paradigm for multimodal large language models, focusing on visual tokenization for localization. Groma achieves state-of-the-art performance in referring expression comprehension benchmarks. The tool provides pretrained model weights and instructions for data preparation, training, inference, and evaluation. Users can customize training by starting from intermediate checkpoints. Groma is designed to handle tasks related to detection pretraining, alignment pretraining, instruction finetuning, instruction following, and more.
amber-train
Amber is the first model in the LLM360 family, an initiative for comprehensive and fully open-sourced LLMs. It is a 7B English language model with the LLaMA architecture. The model type is a language model with the same architecture as LLaMA-7B. It is licensed under Apache 2.0. The resources available include training code, data preparation, metrics, and fully processed Amber pretraining data. The model has been trained on various datasets like Arxiv, Book, C4, Refined-Web, StarCoder, StackExchange, and Wikipedia. The hyperparameters include a total of 6.7B parameters, hidden size of 4096, intermediate size of 11008, 32 attention heads, 32 hidden layers, RMSNorm ε of 1e^-6, max sequence length of 2048, and a vocabulary size of 32000.
LESS
This repository contains the code for the paper 'LESS: Selecting Influential Data for Targeted Instruction Tuning'. The work proposes a data selection method to choose influential data for inducing a target capability. It includes steps for warmup training, building the gradient datastore, selecting data for a task, and training with the selected data. The repository provides tools for data preparation, data selection pipeline, and evaluation of the model trained on the selected data.
oci-data-science-ai-samples
The Oracle Cloud Infrastructure Data Science and AI services Examples repository provides demos, tutorials, and code examples showcasing various features of the OCI Data Science service and AI services. It offers tools for data scientists to develop and deploy machine learning models efficiently, with features like Accelerated Data Science SDK, distributed training, batch processing, and machine learning pipelines. Whether you're a beginner or an experienced practitioner, OCI Data Science Services provide the resources needed to build, train, and deploy models easily.
ML-Bench
ML-Bench is a tool designed to evaluate large language models and agents for machine learning tasks on repository-level code. It provides functionalities for data preparation, environment setup, usage, API calling, open source model fine-tuning, and inference. Users can clone the repository, load datasets, run ML-LLM-Bench, prepare data, fine-tune models, and perform inference tasks. The tool aims to facilitate the evaluation of language models and agents in the context of machine learning tasks on code repositories.
VLMEvalKit
VLMEvalKit is an open-source evaluation toolkit of large vision-language models (LVLMs). It enables one-command evaluation of LVLMs on various benchmarks, without the heavy workload of data preparation under multiple repositories. In VLMEvalKit, we adopt generation-based evaluation for all LVLMs, and provide the evaluation results obtained with both exact matching and LLM-based answer extraction.
farmvibes-ai
FarmVibes.AI is a repository focused on developing multi-modal geospatial machine learning models for agriculture and sustainability. It enables users to fuse various geospatial and spatiotemporal datasets, such as satellite imagery, drone imagery, and weather data, to generate robust insights for agriculture-related problems. The repository provides fusion workflows, data preparation tools, model training notebooks, and an inference engine to facilitate the creation of geospatial models tailored for agriculture and farming. Users can interact with the tools via a local cluster, REST API, or a Python client, and the repository includes documentation and notebook examples to guide users in utilizing FarmVibes.AI for tasks like harvest date detection, climate impact estimation, micro climate prediction, and crop identification.
LLM-Finetune-Guide
This project provides a comprehensive guide to fine-tuning large language models (LLMs) with efficient methods like LoRA and P-tuning V2. It includes detailed instructions, code examples, and performance benchmarks for various LLMs and fine-tuning techniques. The guide also covers data preparation, evaluation, prediction, and running inference on CPU environments. By leveraging this guide, users can effectively fine-tune LLMs for specific tasks and applications.
llm_finetuning
This repository provides a comprehensive set of tools for fine-tuning large language models (LLMs) using various techniques, including full parameter training, LoRA (Low-Rank Adaptation), and P-Tuning V2. It supports a wide range of LLM models, including Qwen, Yi, Llama, and others. The repository includes scripts for data preparation, training, and inference, making it easy for users to fine-tune LLMs for specific tasks. Additionally, it offers a collection of pre-trained models and provides detailed documentation and examples to guide users through the process.
Chinese-Tiny-LLM
Chinese-Tiny-LLM is a repository containing procedures for cleaning Chinese web corpora and pre-training code. It introduces CT-LLM, a 2B parameter language model focused on the Chinese language. The model primarily uses Chinese data from a 1,200 billion token corpus, showing excellent performance in Chinese language tasks. The repository includes tools for filtering, deduplication, and pre-training, aiming to encourage further research and innovation in language model development.
TempCompass
TempCompass is a benchmark designed to evaluate the temporal perception ability of Video LLMs. It encompasses a diverse set of temporal aspects and task formats to comprehensively assess the capability of Video LLMs in understanding videos. The benchmark includes conflicting videos to prevent models from relying on single-frame bias and language priors. Users can clone the repository, install required packages, prepare data, run inference using examples like Video-LLaVA and Gemini, and evaluate the performance of their models across different tasks such as Multi-Choice QA, Yes/No QA, Caption Matching, and Caption Generation.
LabelLLM
LabelLLM is an open-source data annotation platform designed to optimize the data annotation process for LLM development. It offers flexible configuration, multimodal data support, comprehensive task management, and AI-assisted annotation. Users can access a suite of annotation tools, enjoy a user-friendly experience, and enhance efficiency. The platform allows real-time monitoring of annotation progress and quality control, ensuring data integrity and timeliness.
aws-machine-learning-university-responsible-ai
This repository contains slides, notebooks, and data for the Machine Learning University (MLU) Responsible AI class. The mission is to make Machine Learning accessible to everyone, covering widely used ML techniques and applying them to real-world problems. The class includes lectures, final projects, and interactive visuals to help users learn about Responsible AI and core ML concepts.
llm-datasets
LLM Datasets is a repository containing high-quality datasets, tools, and concepts for LLM fine-tuning. It provides datasets with characteristics like accuracy, diversity, and complexity to train large language models for various tasks. The repository includes datasets for general-purpose, math & logic, code, conversation & role-play, and agent & function calling domains. It also offers guidance on creating high-quality datasets through data deduplication, data quality assessment, data exploration, and data generation techniques.
DB-GPT-Hub
DB-GPT-Hub is an experimental project leveraging Large Language Models (LLMs) for Text-to-SQL parsing. It includes stages like data collection, preprocessing, model selection, construction, and fine-tuning of model weights. The project aims to enhance Text-to-SQL capabilities, reduce model training costs, and enable developers to contribute to improving Text-to-SQL accuracy. The ultimate goal is to achieve automated question-answering based on databases, allowing users to execute complex database queries using natural language descriptions. The project has successfully integrated multiple large models and established a comprehensive workflow for data processing, SFT model training, prediction output, and evaluation.
20 - OpenAI Gpts
College entrance exam prediction app
Our college entrance exam prediction app uses advanced algorithms and data analysis to provide accurate predictions for students preparing to take their college entrance exams.
Interview Pro
By combining the expertise of top career coaches with advanced AI, our GPT helps you excel in interviews across various job functions and levels. We've also compiled the most practical tips for you | We value your experience, please contact [email protected] if you need support ❤️!
Algo Final Exam Tutor
I assist in studying for an algorithms exam, guiding through concepts and problems.
Tech Interview Coach
Your go-to guide for nailing tech interviews with dynamic mock sessions!
Vorstellungsgespräch Simulator Bewerbung Training
Wertet Lebenslauf und Stellenanzeige aus und simuliert ein Vorstellungsgespräch mit anschließender Auswertung: Lebenslauf und Anzeige einfach hochladen und starten.
Mock Interview Practice
4.5 ★ A mock interview is a practice interview, that could be useful while you're looking for a job. This GPT works for any job and any language.
EconoGraph
Expert in Micro Economics, interprets graphs, explains concepts, avoids direct exam answers.
Begum Bozoglu
According to the relevant documents, what questions may arise during the job interview?
Dream Job Interview Ace
I'm a specialized recruiter, conducting realistic job interviews based on provided job postings.
Hiring Helper & Interview Whiz
AI assistant creating interview questions tailored to your company, the role, and candidates' background
Back Propagation
I'm Back Propagation, here to help you understand and apply back propagation techniques to your AI models.