Best AI tools for< Benchmark Compensation >
20 - AI tool Sites
INOP
INOP is an impact-driven professional network that uses advanced AI matching algorithms to connect professionals with like-minded individuals, job opportunities, and companies that share their values and interests. The platform offers personalized job alerts, geolocation features, and actionable compensation insights. INOP goes beyond traditional networking platforms by providing rich enterprise-level insights on company culture, values, reputation, and ESG data sets. Users can access salary benchmarks, career path insights, and skills benchmarking to make informed career decisions.
Junbi.ai
Junbi.ai is an AI-powered insights platform designed for YouTube advertisers. It offers AI-powered creative insights for YouTube ads, allowing users to benchmark their ads, predict performance, and test quickly and easily with fully AI-powered technology. The platform also includes expoze.io API for attention prediction on images or videos, with scientifically valid results and developer-friendly features for easy integration into software applications.
HelloData
HelloData is an AI-powered platform designed for multifamily professionals in the real estate industry. It offers automated rent surveys, effective rent calculation, historical rent trends, expense benchmarks, and development feasibility analysis. The platform provides unlimited market surveys with competitor leasing trends, concessions, fees, and amenities, helping users optimize rents and grow net operating income. HelloData saves time by automating market surveys, reducing report times, and providing nationwide access to real-time data. It is a comprehensive toolbox that eliminates manual surveys and offers accurate data for real estate analysis.
ARC Prize
ARC Prize is a platform hosting a $1,000,000+ public competition aimed at beating and open-sourcing a solution to the ARC-AGI benchmark. The platform is dedicated to advancing open artificial general intelligence (AGI) for the public benefit. It provides a formal benchmark, ARC-AGI, created by François Chollet, to measure progress towards AGI by testing the ability to efficiently acquire new skills and solve open-ended problems. ARC Prize encourages participants to try solving test puzzles to identify patterns and improve their AGI skills.
Report Card Comments Online
Report Card Comments Online is an AI Writing Assistant tool that helps teachers generate high-quality, unique, and personalized report card comments. The tool allows users to create a quality benchmark by writing their first draft of comments with the assistance of an AI assistant. It simplifies the report card writing process by providing features like rephrasing, maximum character count, and easy exporting of comments into a file. Designed by teachers for teachers, Report Card AI aims to streamline the comment writing process, ensuring error-free and eloquently written first drafts.
ASK BOSCO®
ASK BOSCO® is an AI reporting and forecasting tool designed for agencies and retailers. It connects and consolidates data for easy reporting, predicts media spend allocation, plans budgets, and forecasts future performance with 96% accuracy. The tool combines internal marketing data with algorithmic modeling to create personalized reporting dashboards, enabling data-driven marketing decisions and insights. ASK BOSCO® is trusted by leading brands and agencies, offering statistical modeling and machine learning for media budget planning and benchmarking against competitors.
Perspect
Perspect is an AI-powered platform designed for high-performance software teams. It offers real-time insights into team contributions and impact, optimizing developer experience, and rewarding high-performers. With 50+ integrations, Perspect enables visualization of impact, benchmarking performance, and uses machine learning models to identify and eliminate blockers. The platform is deeply integrated with web3 wallets and offers built-in reward mechanisms. Managers can align resources around crucial KPIs, identify top talent, and prevent burnout. Perspect aims to enhance team productivity and employee retention through AI and ML technologies.
Trend Hunter
Trend Hunter is an AI-powered platform that offers a wide range of services to accelerate innovation and provide insights into trends and opportunities. With a vast database of ideas and innovations, Trend Hunter helps individuals and organizations stay ahead of the curve by offering trend reports, newsletters, training programs, and custom services. The platform also provides personalized assessments to enhance innovation potential and offers resources such as books, keynotes, and online courses to foster creativity and strategic thinking.
Deepfake Detection Challenge Dataset
The Deepfake Detection Challenge Dataset is a project initiated by Facebook AI to accelerate the development of new ways to detect deepfake videos. The dataset consists of over 100,000 videos and was created in collaboration with industry leaders and academic experts. It includes two versions: a preview dataset with 5k videos and a full dataset with 124k videos, each featuring facial modification algorithms. The dataset was used in a Kaggle competition to create better models for detecting manipulated media. The top-performing models achieved high accuracy on the public dataset but faced challenges when tested against the black box dataset, highlighting the importance of generalization in deepfake detection. The project aims to encourage the research community to continue advancing in detecting harmful manipulated media.
Clarity AI
Clarity AI is an AI-powered technology platform that offers a Sustainability Tech Kit for sustainable investing, shopping, reporting, and benchmarking. The platform provides built-in sustainability technology with customizable solutions for various needs related to data, methodologies, and tools. It seamlessly integrates into workflows, offering scalable and flexible end-to-end SaaS tools to address sustainability use cases. Clarity AI leverages powerful AI and machine learning to analyze vast amounts of data points, ensuring reliable and transparent data coverage. The platform is designed to empower users to assess, analyze, and report on sustainability aspects efficiently and confidently.
Unify
Unify is an AI tool that offers a unified platform for accessing and comparing various Language Models (LLMs) from different providers. It allows users to combine models for faster, cheaper, and better responses, optimizing for quality, speed, and cost-efficiency. Unify simplifies the complex task of selecting the best LLM by providing transparent benchmarks, personalized routing, and performance optimization tools.
Groq
Groq is a fast AI inference tool that offers GroqCloud™ Platform and GroqRack™ Cluster for developers to build and deploy AI models with ultra-low-latency inference. It provides instant intelligence for openly-available models like Llama 3.1 and is known for its speed and compatibility with other AI providers. Groq powers leading openly-available AI models and has gained recognition in the AI chip industry. The tool has received significant funding and valuation, positioning itself as a strong challenger to established players like Nvidia.
Woven Insights
Woven Insights is an AI-driven Fashion Retail Market & Consumer Insights solution that empowers fashion businesses with data-driven decision-making capabilities. It provides competitive intelligence, performance monitoring analytics, product assortment optimization, market insights, consumer insights, and pricing strategies to help businesses succeed in the retail market. With features like insights-driven competitive benchmarking, real-time market insights, product performance tracking, in-depth market analytics, and sentiment analysis, Woven Insights offers a comprehensive solution for businesses of all sizes. The application also offers bespoke data analysis, AI insights, natural language query, and easy collaboration tools to enhance decision-making processes. Woven Insights aims to democratize fashion intelligence by providing affordable pricing and accessible insights to help businesses stay ahead of the competition.
SocialOpinionAI
The website offers a powerful AI tool for conducting social media opinion research on platforms like TikTok, Snapchat, LinkedIn, and more. It utilizes advanced algorithms to analyze and extract insights from user-generated content, helping businesses and individuals understand public sentiment and trends across various social media channels.
SaaSlidator
SaaSlidator is an AI-powered application designed to help users validate their project ideas efficiently and effectively. By providing a project name and description, SaaSlidator offers valuable insights to support decision-making on whether to proceed with building and launching a minimum viable product (MVP). The platform leverages AI algorithms to analyze data, offer market demand insights, competition analysis, and assess the feasibility of project ideas. With features like rapid validation, monetization suggestions, and benchmarking data, SaaSlidator aims to streamline the idea validation process and empower users to make informed decisions for successful project development.
Seek AI
Seek AI is a generative AI-powered database query tool that helps businesses break through information barriers. It is the #1 most accurate model on the Yale Spider benchmark and offers a variety of features to help businesses modernize their analytics, including auto-verification with confidence estimation, natural language summary, and embedded AI data analyst.
Studious Score AI
Studious Score AI is an AI-powered platform that offers knowledge and skill evaluation services supported by reputable individuals and organizations. The platform aims to revolutionize credentialing by providing a new approach. Studious Score AI is on a mission to establish itself as the global benchmark for assessing skills and knowledge in various aspects of life. Users can explore different categories and unlock their potential through the platform's innovative evaluation methods.
Weavel
Weavel is an AI tool designed to revolutionize prompt engineering for large language models (LLMs). It offers features such as tracing, dataset curation, batch testing, and evaluations to enhance the performance of LLM applications. Weavel enables users to continuously optimize prompts using real-world data, prevent performance regression with CI/CD integration, and engage in human-in-the-loop interactions for scoring and feedback. Ape, the AI prompt engineer, outperforms competitors on benchmark tests and ensures seamless integration and continuous improvement specific to each user's use case. With Weavel, users can effortlessly evaluate LLM applications without the need for pre-existing datasets, streamlining the assessment process and enhancing overall performance.
Notle
Notle is an advanced AI-driven psychometric recording tool designed for mental health professionals. It revolutionizes how patient interactions in psychotherapy sessions are captured and analyzed. The platform provides cutting-edge analysis, effortless tracking, in-depth metrics, and empowers clinicians with intelligent analytics for personalized care. Notle sets a new benchmark for psychometric evaluation tools, ensuring unrivaled precision in psychometric assessment. It offers advanced behavioral insights, user-friendly interface, unmatched precision & reliability, and non-invasive integration into healthcare practices. The application is reliable, accurate, impactful, and validated through research methods.
Reflection 70B
Reflection 70B is a next-gen open-source LLM powered by Llama 70B, offering groundbreaking self-correction capabilities that outsmart GPT-4. It provides advanced AI-powered conversations, assists with various tasks, and excels in accuracy and reliability. Users can engage in human-like conversations, receive assistance in research, coding, creative writing, and problem-solving, all while benefiting from its innovative self-correction mechanism. Reflection 70B sets new standards in AI performance and is designed to enhance productivity and decision-making across multiple domains.
20 - Open Source AI Tools
Awesome-LLM-Prune
This repository is dedicated to the pruning of large language models (LLMs). It aims to serve as a comprehensive resource for researchers and practitioners interested in the efficient reduction of model size while maintaining or enhancing performance. The repository contains various papers, summaries, and links related to different pruning approaches for LLMs, along with author information and publication details. It covers a wide range of topics such as structured pruning, unstructured pruning, semi-structured pruning, and benchmarking methods. Researchers and practitioners can explore different pruning techniques, understand their implications, and access relevant resources for further study and implementation.
Awesome-LLM-Compression
Awesome LLM compression research papers and tools to accelerate LLM training and inference.
Awesome-LLM-Inference
Awesome-LLM-Inference: A curated list of 📙Awesome LLM Inference Papers with Codes, check 📖Contents for more details. This repo is still updated frequently ~ 👨💻 Welcome to star ⭐️ or submit a PR to this repo!
Awesome-Quantization-Papers
This repo contains a comprehensive paper list of **Model Quantization** for efficient deep learning on AI conferences/journals/arXiv. As a highlight, we categorize the papers in terms of model structures and application scenarios, and label the quantization methods with keywords.
Awesome-Attention-Heads
Awesome-Attention-Heads is a platform providing the latest research on Attention Heads, focusing on enhancing understanding of Transformer structure for model interpretability. It explores attention mechanisms for behavior, inference, and analysis, alongside feed-forward networks for knowledge storage. The repository aims to support researchers studying LLM interpretability and hallucination by offering cutting-edge information on Attention Head Mining.
Efficient_Foundation_Model_Survey
Efficient Foundation Model Survey is a comprehensive analysis of resource-efficient large language models (LLMs) and multimodal foundation models. The survey covers algorithmic and systemic innovations to support the growth of large models in a scalable and environmentally sustainable way. It explores cutting-edge model architectures, training/serving algorithms, and practical system designs. The goal is to provide insights on tackling resource challenges posed by large foundation models and inspire future breakthroughs in the field.
Awesome-LLM4RS-Papers
This paper list is about Large Language Model-enhanced Recommender System. It also contains some related works. Keywords: recommendation system, large language models
pint-benchmark
The Lakera PINT Benchmark provides a neutral evaluation method for prompt injection detection systems, offering a dataset of English inputs with prompt injections, jailbreaks, benign inputs, user-agent chats, and public document excerpts. The dataset is designed to be challenging and representative, with plans for future enhancements. The benchmark aims to be unbiased and accurate, welcoming contributions to improve prompt injection detection. Users can evaluate prompt injection detection systems using the provided Jupyter Notebook. The dataset structure is specified in YAML format, allowing users to prepare their datasets for benchmarking. Evaluation examples and resources are provided to assist users in evaluating prompt injection detection models and tools.
chinese-llm-benchmark
The Chinese LLM Benchmark is a continuous evaluation list of large models in CLiB, covering a wide range of commercial and open-source models from various companies and research institutions. It supports multidimensional evaluation of capabilities including classification, information extraction, reading comprehension, data analysis, Chinese encoding efficiency, and Chinese instruction compliance. The benchmark not only provides capability score rankings but also offers the original output results of all models for interested individuals to score and rank themselves.
yet-another-applied-llm-benchmark
Yet Another Applied LLM Benchmark is a collection of diverse tests designed to evaluate the capabilities of language models in performing real-world tasks. The benchmark includes tests such as converting code, decompiling bytecode, explaining minified JavaScript, identifying encoding formats, writing parsers, and generating SQL queries. It features a dataflow domain-specific language for easily adding new tests and has nearly 100 tests based on actual scenarios encountered when working with language models. The benchmark aims to assess whether models can effectively handle tasks that users genuinely care about.
goodai-ltm-benchmark
This repository contains code and data for replicating experiments on Long-Term Memory (LTM) abilities of conversational agents. It includes a benchmark for testing agents' memory performance over long conversations, evaluating tasks requiring dynamic memory upkeep and information integration. The repository supports various models, datasets, and configurations for benchmarking and reporting results.
llm-structured-output-benchmarks
Benchmark various LLM Structured Output frameworks like Instructor, Mirascope, Langchain, LlamaIndex, Fructose, Marvin, Outlines, LMFormatEnforcer, etc on tasks like multi-label classification, named entity recognition, synthetic data generation. The tool provides benchmark results, methodology, instructions to run the benchmark, add new data, and add a new framework. It also includes a roadmap for framework-related tasks, contribution guidelines, citation information, and feedback request.
mint-bench
MINT benchmark aims to evaluate LLMs' ability to solve tasks with multi-turn interactions by (1) using tools and (2) leveraging natural language feedback.
MMMU
MMMU is a benchmark designed to evaluate multimodal models on college-level subject knowledge tasks, covering 30 subjects and 183 subfields with 11.5K questions. It focuses on advanced perception and reasoning with domain-specific knowledge, challenging models to perform tasks akin to those faced by experts. The evaluation of various models highlights substantial challenges, with room for improvement to stimulate the community towards expert artificial general intelligence (AGI).
LiveBench
LiveBench is a benchmark tool designed for Language Model Models (LLMs) with a focus on limiting contamination through monthly new questions based on recent datasets, arXiv papers, news articles, and IMDb movie synopses. It provides verifiable, objective ground-truth answers for accurate scoring without an LLM judge. The tool offers 18 diverse tasks across 6 categories and promises to release more challenging tasks over time. LiveBench is built on FastChat's llm_judge module and incorporates code from LiveCodeBench and IFEval.
crab
CRAB is a framework for building LLM agent benchmark environments in a Python-centric way. It is cross-platform and multi-environment, allowing the creation of agent environments supporting various deployment options. The framework offers easy-to-use configuration with the ability to add new actions and define environments seamlessly. CRAB also provides a novel benchmarking suite with tasks and evaluators defined in Python, along with a unique graph evaluator method for detailed metrics.
10 - OpenAI Gpts
HVAC Apex
Benchmark HVAC GPT model with unmatched expertise and forward-thinking solutions, powered by OpenAI
SaaS Navigator
A strategic SaaS analyst for CXOs, with a focus on market trends and benchmarks.
Transfer Pricing Advisor
Guides businesses in managing global tax liabilities efficiently.
Salary Guides
I provide monthly salary data in euros, using a structured format for global job roles.
Performance Testing Advisor
Ensures software performance meets organizational standards and expectations.