Best AI tools for< Analyze Pdf >
20 - AI tool Sites
PrepSup
PrepSup is a powerful AI-powered learning platform that provides students with personalized study materials, an AI tutor, and a PDF analyzer to help them excel in their studies. With PrepSup, students can create and share flashcards, access a vast library of pre-made flashcards, and get instant feedback on their progress. The AI tutor provides personalized recommendations and guidance, helping students identify areas for improvement and develop effective study strategies. The PDF analyzer extracts key concepts and insights from PDFs, making it easier for students to understand and retain information. Whether you're preparing for a test, writing a paper, or simply trying to learn a new subject, PrepSup is the perfect tool to help you succeed.
PrepSup
PrepSup is an AI-powered platform that offers a combination of powerful flashcards, AI tutoring, and PDF analysis tools. It provides a comprehensive solution for students and professionals to enhance their learning experience, improve retention, and analyze PDF documents efficiently. With PrepSup, users can create interactive flashcards, receive personalized tutoring based on AI algorithms, and analyze PDF files for key information. The platform aims to streamline the learning process and make studying more effective and engaging.
Yesil Health
Yesil Health is an AI Health Assistant application that provides evidence-based answers to health questions. Users can chat for free to receive personalized health information, analyze health PDFs, and get accurate explanations based on the latest medical research. The application learns about users with each question, building a personalized health profile. Yesil Health is backed by innovative AI technology and aims to enhance individuals' well-being through data-driven insights for a healthier lifestyle.
Linnk AI
Linnk AI is a powerful web research assistant and PDF summarizer tool designed to help professionals analyze and summarize content quickly and efficiently. It allows users to skim through news and articles effortlessly, grasp complex research insights, and summarize lengthy PDFs in seconds. With features like cross-language summarization, automatic knowledge base creation, and browser extension integration, Linnk AI empowers users to accelerate insight acquisition and creation. Join over 30,000 professionals and experience faster analysis and smarter content creation with Linnk AI.
PrivacyDoc
PrivacyDoc is an AI-powered portal that allows users to analyze and query PDF and ebooks effortlessly. By leveraging advanced NLP technology, PrivacyDoc enables users to uncover insights and conduct thorough document analysis. The platform offers features such as easy file upload, query functionality, enhanced security measures, and free access to powerful PDF analysis tools. With PrivacyDoc, users can experience the convenience of logging in with their Google account, submitting queries for prompt AI-driven responses, and ensuring data privacy with secure file handling.
PdfPal AI
PdfPal AI is an innovative AI-powered application that allows users to interact with PDF documents through intelligent conversations. Users can upload any PDF document, ask questions, receive instant answers, obtain summaries, and gain valuable insights effortlessly. The application is designed to simplify complex documents, guide users through content, and provide intelligent analysis, making it a valuable tool for individuals across various industries.
ChatInDoc
ChatInDoc is an AI-powered tool designed to revolutionize the way people interact with and comprehend lengthy documents. By leveraging cutting-edge AI technology, ChatInDoc offers users the ability to efficiently analyze, summarize, and extract key information from various file formats such as PDFs, Office documents, and text files. With features like IR analysis, term lookup, PDF viewing, and AI-powered chat capabilities, ChatInDoc aims to streamline the process of digesting complex information and enhance productivity. The application's user-friendly interface and advanced AI algorithms make it a valuable tool for students, professionals, and anyone dealing with extensive document reading tasks.
PDF Summarizer
PDFsummarizer.net is an AI tool designed to simplify how users interact with PDF documents. It instantly generates AI summaries of PDF content, breaks language barriers, and offers organized conversations with direct citations. Whether for studying, research, or professional purposes, this tool enhances understanding and accessibility of information across various fields. It improves productivity by streamlining the process of extracting vital information.
Chat PDF AI Online
Chat PDF AI Online is an advanced AI tool that revolutionizes the way users interact with PDF documents. It offers cutting-edge AI features to enhance the PDF experience, providing seamless solutions for reading, summarizing, analyzing, and translating PDF files. With features like longer context support, powerful tabular data analysis, and advanced LLM support, Chat PDF AI Online ensures smarter and faster document processing. Users can securely upload and process large PDF files, benefiting from high accuracy and efficiency in document handling.
Powerdrill
Powerdrill is a platform that provides swift insights from knowledge and data. It offers a range of features such as discovering datasets, creating BI dashboards, accessing various apps, resources, blogs, documentation, and changelogs. The platform is available in English and fosters a community through its affiliate program. Users can sign up for a basic plan to start utilizing the tools and services offered by Powerdrill.
VERSE
VERSE empowers you to seamlessly interact with PDFs, revolutionizing your workflow. With AI-powered responses, direct links to PDF pages, and a distraction-free interface, VERSE enhances your productivity and comprehension. Experience the future of PDF interaction today.
PDF AI
The website offers an AI-powered PDF reader that allows users to chat with any PDF document. Users can upload a PDF, ask questions, get answers, extract precise sections of text, summarize, annotate, highlight, classify, analyze, translate, and more. The AI tool helps in quickly identifying key details, finding answers without reading through every word, and citing sources. It is ideal for professionals in various fields like legal, finance, research, academia, healthcare, and public sector, as well as students. The tool aims to save time, increase productivity, and simplify document management and analysis.
xPDF AI by PDFChat
xPDF AI by PDFChat is a personal AI assistant designed for PDF files. It offers advanced features to analyze tables, figures, and text from PDF documents, providing users with instant answers and insights. The AI assistant uses a chat interface for effortless interaction and is capable of summarizing PDF files, retrieving relevant figures, processing tables intelligently, and performing accurate calculations. Users can also benefit from voice chat, advanced search tools, performance analytics, report generation, and document assistance. With over 10,000 users trusting the platform, PDFChat aims to revolutionize document analysis and enhance productivity.
Chat-docs AI
Chat-docs AI is an innovative AI application that allows users to interact with PDF documents through natural language conversations. The tool leverages advanced artificial intelligence algorithms to summarize long documents, explain complex concepts, and find key information with cited sources in seconds. It transforms PDFs into intelligent entities capable of dialogue, making learning, research, and analysis more interactive and personalized. Chat-docs AI is designed to be intuitive, secure, and accessible to users from various backgrounds, revolutionizing the way individuals engage with textual content.
aiPDF
aiPDF is an AI-powered PDF chat application that allows users to summarize, get insights from, and chat with any type of file. It stands out as a fun and user-friendly tool for various document-related tasks, offering detailed references and instant answers through advanced AI technology. Users can upload a wide range of documents, from financial reports to academic essays, and benefit from the tool's diverse features. aiPDF ensures data security and provides a purely dollar-free experience, making it a reliable and enjoyable platform for document management.
TanyaPDF
TanyaPDF is an AI-powered tool that helps users to learn and understand PDF documents more efficiently. By leveraging AI technology, TanyaPDF can read and summarize research files, allowing users to interact with the content through an interactive chat interface. Users can save and review conversations, ask questions, receive accurate answers, and enhance their learning experience without losing track of their progress. TanyaPDF is suitable for students, researchers, and professionals who seek assistance in tasks such as thesis writing, research analysis, legal document comprehension, financial report review, and interactive document creation.
Hansei
Hansei is an AI-powered platform that allows users to chat with their data using AI assistants, create AI ChatBots without coding, and streamline data importing from various sources. It offers customizable and shareable chat widgets, bot customization and integrations, and advanced analytics insights. Hansei is designed to revolutionize the way users interact with their data by providing instant answers to questions and personalized assistance across multiple channels.
Skimming
Skimming is an AI tool that enables users to interact with various types of data, including audio, video, and text, to extract knowledge. It offers features like chatting with documents, YouTube videos, websites, audio, and video, as well as custom prompts and multilingual support. Skimming is trusted by over 100,000 users and is designed to save time and enhance information extraction. The tool caters to a diverse audience, including teachers, students, businesses, researchers, scholars, lawyers, HR professionals, YouTubers, and podcasters.
LedgerBox
LedgerBox is an AI tool that specializes in converting bank statements into digital formats. It simplifies the process of managing financial data by automatically extracting and organizing information from bank statements. With LedgerBox, users can easily convert paper-based bank statements into digital files, enabling quick and efficient financial analysis and reporting. The tool is designed to save time and reduce errors associated with manual data entry, making it a valuable asset for individuals and businesses looking to streamline their financial processes.
ClearAI
ClearAI is an AI-powered platform that offers instant extraction of insights, effortless document navigation, and natural language interaction. It enables users to upload PDFs securely, ask questions, and receive accurate responses in seconds. With features like structured results, intelligent search, and lifetime access offers, ClearAI simplifies tasks such as analyzing company reports, risk assessment, audit support, contract review, legal research, and due diligence. The platform is designed to streamline document analysis and provide relevant data efficiently.
20 - Open Source AI Tools
serverless-pdf-chat
The serverless-pdf-chat repository contains a sample application that allows users to ask natural language questions of any PDF document they upload. It leverages serverless services like Amazon Bedrock, AWS Lambda, and Amazon DynamoDB to provide text generation and analysis capabilities. The application architecture involves uploading a PDF document to an S3 bucket, extracting metadata, converting text to vectors, and using a LangChain to search for information related to user prompts. The application is not intended for production use and serves as a demonstration and educational tool.
awesome-llm-apps
Awesome LLM Apps is a curated collection of applications that leverage RAG with OpenAI, Anthropic, Gemini, and open-source models. The repository contains projects such as Local Llama-3 with RAG for chatting with webpages locally, Chat with Gmail for interacting with Gmail using natural language, Chat with Substack Newsletter for conversing with Substack newsletters using GPT-4, Chat with PDF for intelligent conversation based on PDF documents, and Chat with YouTube Videos for engaging with YouTube video content through natural language. Users can clone the repository, navigate to specific project directories, install dependencies, and follow project-specific instructions to set up and run the apps. Contributions are encouraged, and new app ideas or improvements can be submitted via pull requests.
EDA-GPT
EDA GPT is an open-source data analysis companion that offers a comprehensive solution for structured and unstructured data analysis. It streamlines the data analysis process, empowering users to explore, visualize, and gain insights from their data. EDA GPT supports analyzing structured data in various formats like CSV, XLSX, and SQLite, generating graphs, and conducting in-depth analysis of unstructured data such as PDFs and images. It provides a user-friendly interface, powerful features, and capabilities like comparing performance with other tools, analyzing large language models, multimodal search, data cleaning, and editing. The tool is optimized for maximal parallel processing, searching internet and documents, and creating analysis reports from structured and unstructured data.
letmedoit
LetMeDoIt AI is a virtual assistant designed to revolutionize the way you work. It goes beyond being a mere chatbot by offering a unique and powerful capability - the ability to execute commands and perform computing tasks on your behalf. With LetMeDoIt AI, you can access OpenAI ChatGPT-4, Google Gemini Pro, and Microsoft AutoGen, local LLMs, all in one place, to enhance your productivity.
SuperKnowa
SuperKnowa is a fast framework to build Enterprise RAG (Retriever Augmented Generation) Pipelines at Scale, powered by watsonx. It accelerates Enterprise Generative AI applications to get prod-ready solutions quickly on private data. The framework provides pluggable components for tackling various Generative AI use cases using Large Language Models (LLMs), allowing users to assemble building blocks to address challenges in AI-driven text generation. SuperKnowa is battle-tested from 1M to 200M private knowledge base & scaled to billions of retriever tokens.
document-ai-samples
The Google Cloud Document AI Samples repository contains code samples and Community Samples demonstrating how to analyze, classify, and search documents using Google Cloud Document AI. It includes various projects showcasing different functionalities such as integrating with Google Drive, processing documents using Python, content moderation with Dialogflow CX, fraud detection, language extraction, paper summarization, tax processing pipeline, and more. The repository also provides access to test document files stored in a publicly-accessible Google Cloud Storage Bucket. Additionally, there are codelabs available for optical character recognition (OCR), form parsing, specialized processors, and managing Document AI processors. Community samples, like the PDF Annotator Sample, are also included. Contributions are welcome, and users can seek help or report issues through the repository's issues page. Please note that this repository is not an officially supported Google product and is intended for demonstrative purposes only.
resume-job-matcher
Resume Job Matcher is a Python script that automates the process of matching resumes to a job description using AI. It leverages the Anthropic Claude API or OpenAI's GPT API to analyze resumes and provide a match score along with personalized email responses for candidates. The tool offers comprehensive resume processing, advanced AI-powered analysis, in-depth evaluation & scoring, comprehensive analytics & reporting, enhanced candidate profiling, and robust system management. Users can customize font presets, generate PDF versions of unified resumes, adjust logging level, change scoring model, modify AI provider, and adjust AI model. The final score for each resume is calculated based on AI-generated match score and resume quality score, ensuring content relevance and presentation quality are considered. Troubleshooting tips, best practices, contribution guidelines, and required Python packages are provided.
ChatAFL
ChatAFL is a protocol fuzzer guided by large language models (LLMs) that extracts machine-readable grammar for protocol mutation, increases message diversity, and breaks coverage plateaus. It integrates with ProfuzzBench for stateful fuzzing of network protocols, providing smooth integration. The artifact includes modified versions of AFLNet and ProfuzzBench, source code for ChatAFL with proposed strategies, and scripts for setup, execution, analysis, and cleanup. Users can analyze data, construct plots, examine LLM-generated grammars, enriched seeds, and state-stall responses, and reproduce results with downsized experiments. Customization options include modifying fuzzers, tuning parameters, adding new subjects, troubleshooting, and working on GPT-4. Limitations include interaction with OpenAI's Large Language Models and a hard limit of 150,000 tokens per minute.
Awesome-Code-LLM
Analyze the following text from a github repository (name and readme text at end) . Then, generate a JSON object with the following keys and provide the corresponding information for each key, in lowercase letters: 'description' (detailed description of the repo, must be less than 400 words,Ensure that no line breaks and quotation marks.),'for_jobs' (List 5 jobs suitable for this tool,in lowercase letters), 'ai_keywords' (keywords of the tool,user may use those keyword to find the tool,in lowercase letters), 'for_tasks' (list of 5 specific tasks user can use this tool to do,in lowercase letters), 'answer' (in english languages)
Awesome-Chinese-LLM
Analyze the following text from a github repository (name and readme text at end) . Then, generate a JSON object with the following keys and provide the corresponding information for each key, ,'for_jobs' (List 5 jobs suitable for this tool,in lowercase letters), 'ai_keywords' (keywords of the tool,in lowercase letters), 'for_tasks' (list of 5 specific tasks user can use this tool to do,in less than 3 words,Verb + noun form,in daily spoken language,in lowercase letters).Answer in english languagesname:Awesome-Chinese-LLM readme:# Awesome Chinese LLM ![](https://awesome.re/badge.svg) ![Awesome-Chinese-LLM](src/icon.png) An Awesome Collection for LLM in Chinese 收集和梳理中文LLM相关 ![GitHub stars](https://img.shields.io/github/stars/HqWu-HITCS/Awesome-Chinese-LLM.svg?style=popout-square) ![GitHub issues](https://img.shields.io/github/issues/HqWu-HITCS/Awesome-Chinese- LLM.svg?style=popout-square) ![GitHub forks](https://img.shields.io/github/forks/HqWu-HITCS/Awesome-Chinese- LLM.svg?style=popout-square) 自ChatGPT为代表的大语言模型(Large Language Model, LLM)出现以后,由于其惊人的类通用人工智能(AGI)的能力,掀起了新一轮自然语言处理领域的研究和应用的浪潮。尤其是以ChatGLM、LLaMA等平民玩家都能跑起来的较小规模的LLM开源之后,业界涌现了非常多基于LLM的二次微调或应用的案例。本项目旨在收集和梳理中文LLM相关的开源模型、应用、数据集及教程等资料,目前收录的资源已达100+个! 如果本项目能给您带来一点点帮助,麻烦点个⭐️吧~ 同时也欢迎大家贡献本项目未收录的开源模型、应用、数据集等。提供新的仓库信息请发起PR,并按照本项目的格式提供仓库链接、star数,简介等相关信息,感谢~
extractor
Extractor is an AI-powered data extraction library for Laravel that leverages OpenAI's capabilities to effortlessly extract structured data from various sources, including images, PDFs, and emails. It features a convenient wrapper around OpenAI Chat and Completion endpoints, supports multiple input formats, includes a flexible Field Extractor for arbitrary data extraction, and integrates with Textract for OCR functionality. Extractor utilizes JSON Mode from the latest GPT-3.5 and GPT-4 models, providing accurate and efficient data extraction.
AIL-framework
AIL framework is a modular framework to analyze potential information leaks from unstructured data sources like pastes from Pastebin or similar services or unstructured data streams. AIL framework is flexible and can be extended to support other functionalities to mine or process sensitive information (e.g. data leak prevention).
ail-framework
AIL framework is a modular framework to analyze potential information leaks from unstructured data sources like pastes from Pastebin or similar services or unstructured data streams. AIL framework is flexible and can be extended to support other functionalities to mine or process sensitive information (e.g. data leak prevention).
genaiscript
GenAIScript is a scripting environment designed to facilitate file ingestion, prompt development, and structured data extraction. Users can define metadata and model configurations, specify data sources, and define tasks to extract specific information. The tool provides a convenient way to analyze files and extract desired content in a structured format. It offers a user-friendly interface for working with data and automating data extraction processes, making it suitable for various data processing tasks.
wdoc
wdoc is a powerful Retrieval-Augmented Generation (RAG) system designed to summarize, search, and query documents across various file types. It aims to handle large volumes of diverse document types, making it ideal for researchers, students, and professionals dealing with extensive information sources. wdoc uses LangChain to process and analyze documents, supporting tens of thousands of documents simultaneously. The system includes features like high recall and specificity, support for various Language Model Models (LLMs), advanced RAG capabilities, advanced document summaries, and support for multiple tasks. It offers markdown-formatted answers and summaries, customizable embeddings, extensive documentation, scriptability, and runtime type checking. wdoc is suitable for power users seeking document querying capabilities and AI-powered document summaries.
PromptFuzz
**Description:** PromptFuzz is an automated tool that generates high-quality fuzz drivers for libraries via a fuzz loop constructed on mutating LLMs' prompts. The fuzz loop of PromptFuzz aims to guide the mutation of LLMs' prompts to generate programs that cover more reachable code and explore complex API interrelationships, which are effective for fuzzing. **Features:** * **Multiply LLM support** : Supports the general LLMs: Codex, Inocder, ChatGPT, and GPT4 (Currently tested on ChatGPT). * **Context-based Prompt** : Construct LLM prompts with the automatically extracted library context. * **Powerful Sanitization** : The program's syntax, semantics, behavior, and coverage are thoroughly analyzed to sanitize the problematic programs. * **Prioritized Mutation** : Prioritizes mutating the library API combinations within LLM's prompts to explore complex interrelationships, guided by code coverage. * **Fuzz Driver Exploitation** : Infers API constraints using statistics and extends fixed API arguments to receive random bytes from fuzzers. * **Fuzz engine integration** : Integrates with grey-box fuzz engine: LibFuzzer. **Benefits:** * **High branch coverage:** The fuzz drivers generated by PromptFuzz achieved a branch coverage of 40.12% on the tested libraries, which is 1.61x greater than _OSS-Fuzz_ and 1.67x greater than _Hopper_. * **Bug detection:** PromptFuzz detected 33 valid security bugs from 49 unique crashes. * **Wide range of bugs:** The fuzz drivers generated by PromptFuzz can detect a wide range of bugs, most of which are security bugs. * **Unique bugs:** PromptFuzz detects uniquely interesting bugs that other fuzzers may miss. **Usage:** 1. Build the library using the provided build scripts. 2. Export the LLM API KEY if using ChatGPT or GPT4. 3. Generate fuzz drivers using the `fuzzer` command. 4. Run the fuzz drivers using the `harness` command. 5. Deduplicate and analyze the reported crashes. **Future Works:** * **Custom LLMs suport:** Support custom LLMs. * **Close-source libraries:** Apply PromptFuzz to close-source libraries by fine tuning LLMs on private code corpus. * **Performance** : Reduce the huge time cost required in erroneous program elimination.
dify
Dify is an open-source LLM app development platform that combines AI workflow, RAG pipeline, agent capabilities, model management, observability features, and more. It allows users to quickly go from prototype to production. Key features include: 1. Workflow: Build and test powerful AI workflows on a visual canvas. 2. Comprehensive model support: Seamless integration with hundreds of proprietary / open-source LLMs from dozens of inference providers and self-hosted solutions. 3. Prompt IDE: Intuitive interface for crafting prompts, comparing model performance, and adding additional features. 4. RAG Pipeline: Extensive RAG capabilities that cover everything from document ingestion to retrieval. 5. Agent capabilities: Define agents based on LLM Function Calling or ReAct, and add pre-built or custom tools. 6. LLMOps: Monitor and analyze application logs and performance over time. 7. Backend-as-a-Service: All of Dify's offerings come with corresponding APIs for easy integration into your own business logic.
deepdoctection
**deep** doctection is a Python library that orchestrates document extraction and document layout analysis tasks using deep learning models. It does not implement models but enables you to build pipelines using highly acknowledged libraries for object detection, OCR and selected NLP tasks and provides an integrated framework for fine-tuning, evaluating and running models. For more specific text processing tasks use one of the many other great NLP libraries. **deep** doctection focuses on applications and is made for those who want to solve real world problems related to document extraction from PDFs or scans in various image formats. **deep** doctection provides model wrappers of supported libraries for various tasks to be integrated into pipelines. Its core function does not depend on any specific deep learning library. Selected models for the following tasks are currently supported: * Document layout analysis including table recognition in Tensorflow with **Tensorpack**, or PyTorch with **Detectron2**, * OCR with support of **Tesseract**, **DocTr** (Tensorflow and PyTorch implementations available) and a wrapper to an API for a commercial solution, * Text mining for native PDFs with **pdfplumber**, * Language detection with **fastText**, * Deskewing and rotating images with **jdeskew**. * Document and token classification with all LayoutLM models provided by the **Transformer library**. (Yes, you can use any LayoutLM-model with any of the provided OCR-or pdfplumber tools straight away!). * Table detection and table structure recognition with **table-transformer**. * There is a small dataset for token classification available and a lot of new tutorials to show, how to train and evaluate this dataset using LayoutLMv1, LayoutLMv2, LayoutXLM and LayoutLMv3. * Comprehensive configuration of **analyzer** like choosing different models, output parsing, OCR selection. Check this notebook or the docs for more infos. * Document layout analysis and table recognition now runs with **Torchscript** (CPU) as well and **Detectron2** is not required anymore for basic inference. * [**new**] More angle predictors for determining the rotation of a document based on **Tesseract** and **DocTr** (not contained in the built-in Analyzer). * [**new**] Token classification with **LiLT** via **transformers**. We have added a model wrapper for token classification with LiLT and added a some LiLT models to the model catalog that seem to look promising, especially if you want to train a model on non-english data. The training script for LayoutLM can be used for LiLT as well and we will be providing a notebook on how to train a model on a custom dataset soon. **deep** doctection provides on top of that methods for pre-processing inputs to models like cropping or resizing and to post-process results, like validating duplicate outputs, relating words to detected layout segments or ordering words into contiguous text. You will get an output in JSON format that you can customize even further by yourself. Have a look at the **introduction notebook** in the notebook repo for an easy start. Check the **release notes** for recent updates. **deep** doctection or its support libraries provide pre-trained models that are in most of the cases available at the **Hugging Face Model Hub** or that will be automatically downloaded once requested. For instance, you can find pre-trained object detection models from the Tensorpack or Detectron2 framework for coarse layout analysis, table cell detection and table recognition. Training is a substantial part to get pipelines ready on some specific domain, let it be document layout analysis, document classification or NER. **deep** doctection provides training scripts for models that are based on trainers developed from the library that hosts the model code. Moreover, **deep** doctection hosts code to some well established datasets like **Publaynet** that makes it easy to experiment. It also contains mappings from widely used data formats like COCO and it has a dataset framework (akin to **datasets** so that setting up training on a custom dataset becomes very easy. **This notebook** shows you how to do this. **deep** doctection comes equipped with a framework that allows you to evaluate predictions of a single or multiple models in a pipeline against some ground truth. Check again **here** how it is done. Having set up a pipeline it takes you a few lines of code to instantiate the pipeline and after a for loop all pages will be processed through the pipeline.
llm-universe
This project is a tutorial on developing large model applications for novice developers. It aims to provide a comprehensive introduction to large model development, focusing on Alibaba Cloud servers and integrating personal knowledge assistant projects. The tutorial covers the following topics: 1. **Introduction to Large Models**: A simplified introduction for novice developers on what large models are, their characteristics, what LangChain is, and how to develop an LLM application. 2. **How to Call Large Model APIs**: This section introduces various methods for calling APIs of well-known domestic and foreign large model products, including calling native APIs, encapsulating them as LangChain LLMs, and encapsulating them as Fastapi calls. It also provides a unified encapsulation for various large model APIs, such as Baidu Wenxin, Xunfei Xinghuo, and Zh譜AI. 3. **Knowledge Base Construction**: Loading, processing, and vector database construction of different types of knowledge base documents. 4. **Building RAG Applications**: Integrating LLM into LangChain to build a retrieval question and answer chain, and deploying applications using Streamlit. 5. **Verification and Iteration**: How to implement verification and iteration in large model development, and common evaluation methods. The project consists of three main parts: 1. **Introduction to LLM Development**: A simplified version of V1 aims to help beginners get started with LLM development quickly and conveniently, understand the general process of LLM development, and build a simple demo. 2. **LLM Development Techniques**: More advanced LLM development techniques, including but not limited to: Prompt Engineering, processing of multiple types of source data, optimizing retrieval, recall ranking, Agent framework, etc. 3. **LLM Application Examples**: Introduce some successful open source cases, analyze the ideas, core concepts, and implementation frameworks of these application examples from the perspective of this course, and help beginners understand what kind of applications they can develop through LLM. Currently, the first part has been completed, and everyone is welcome to read and learn; the second and third parts are under creation. **Directory Structure Description**: requirements.txt: Installation dependencies in the official environment notebook: Notebook source code file docs: Markdown documentation file figures: Pictures data_base: Knowledge base source file used
LLM-Viewer
LLM-Viewer is a tool for visualizing Language and Learning Models (LLMs) and analyzing performance on different hardware platforms. It enables network-wise analysis, considering factors such as peak memory consumption and total inference time cost. With LLM-Viewer, users can gain valuable insights into LLM inference and performance optimization. The tool can be used in a web browser or as a command line interface (CLI) for easy configuration and visualization. The ongoing project aims to enhance features like showing tensor shapes, expanding hardware platform compatibility, and supporting more LLMs with manual model graph configuration.
20 - OpenAI Gpts
PDF Ninja
I extract data and tables from PDFs to CSV, focusing on data privacy and precision.
Stock Market Analyst
I read and analyze annual reports of companies. Just upload the annual report PDF and start asking me questions!
Your Edu Gurus Free SAT Score Calculator & Expert
Upload your SAT score PDF to our calculator and analyze how you did and how to preform better
Automated Knowledge Distillation
For strategic knowledge distillation, upload the document you need to analyze and use !start. ENSURE the uploaded file shows DOCUMENT and NOT PDF. This workflow requires leveraging RAG to operate. Only a small amount of PDFs are supported, convert to txt or doc. For timeout, refresh & !continue
Bank Statement Analyst
Multilingual financial expert for PDF bank statement analysis ->> Latest Update: Mar 12th, 2024
Data Extractor Pro
Expert in data extraction and context-driven analysis. Can read most filetypes including PDFS, XLSX, Word, TXT, CSV, EML, Etc.
PDF AI
PDFChat : Analyse 1000's of PDF's in seconds, extract and chat with PDFs in any language.
Wowza Bias Detective
I analyze cognitive biases in scenarios and thoughts, providing neutral, educational insights.
Art Engineer
Analyze and reverse engineer images. Receive style descriptions and image re-creation prompts.